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Preface

This book provides a working guide to the Open Source Computer Vision Library
(OpenCV) and also provides a general background to the field of computer vision suf-
ficient to use OpenCV effectively.

Purpose

Computer vision is a rapidly growing field, partly as a result of both cheaper and more
capable cameras, partly because of affordable processing power, and partly because vi-
sion algorithms are starting to mature. OpenCV itself has played a role in the growth of
computer vision by enabling thousands of people to do more productive work in vision.
With its focus on real-time vision, OpenCV helps students and professionals efficiently
implement projects and jump-start research by providing them with a computer vision
and machine learning infrastructure that was previously available only in a few mature
research labs. The purpose of this text is to:

o Better document OpenCV—detail what function calling conventions really mean
and how to use them correctly.

« Rapidly give the reader an intuitive understanding of how the vision algorithms
work.

« Give the reader some sense of what algorithm to use and when to use it.

o Give the reader a boost in implementing computer vision and machine learning algo-
rithms by providing many working coded examples to start from.

o Provide intuitions about how to fix some of the more advanced routines when some-
thing goes wrong.

Simply put, this is the text the authors wished we had in school and the coding reference
book we wished we had at work.

This book documents a tool kit, OpenCV, that allows the reader to do interesting and
fun things rapidly in computer vision. It gives an intuitive understanding as to how the
algorithms work, which serves to guide the reader in designing and debugging vision




applications and also to make the formal descriptions of computer vision and machine
learning algorithms in other texts easier to comprehend and remember.

After all, it is easier to understand complex algorithms and their associated math when
you start with an intuitive grasp of how those algorithms work.

Who This Book Is For

This book contains descriptions, working coded examples, and explanations of the com-
puter vision tools contained in the OpenCV library. As such, it should be helpful to many
different kinds of users.

Professionals
For those practicing professionals who need to rapidly implement computer vision
systems, the sample code provides a quick framework with which to start. Our de-
scriptions of the intuitions behind the algorithms can quickly teach or remind the
reader how they work.

Students
As we said, this is the text we wish had back in school. The intuitive explanations,
detailed documentation, and sample code will allow you to boot up faster in com-
puter vision, work on more interesting class projects, and ultimately contribute new
research to the field.

Teachers
Computer vision is a fast-moving field. We've found it effective to have the students
rapidly cover an accessible text while the instructor fills in formal exposition where
needed and supplements with current papers or guest lecturers from experts. The stu-
dents can meanwhile start class projects earlier and attempt more ambitious tasks.

Hobbyists
Computer vision is fun, here’s how to hack it.

We have a strong focus on giving readers enough intuition, documentation, and work-
ing code to enable rapid implementation of real-time vision applications.

What This Book Is Not

This book is not a formal text. We do go into mathematical detail at various points,* but it
is all in the service of developing deeper intuitions behind the algorithms or to make clear
the implications of any assumptions built into those algorithms. We have not attempted
a formal mathematical exposition here and might even incur some wrath along the way
from those who do write formal expositions.

This book is not for theoreticians because it has more of an “applied” nature. The book
will certainly be of general help, but is not aimed at any of the specialized niches in com-
puter vision (e.g., medical imaging or remote sensing analysis).

* Always with a warning to more casual users that they may skip such sections.
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That said, it is the belief of the authors that having read the explanations here first, a stu-
dent will not only learn the theory better but remember it longer. Therefore, this book
would make a good adjunct text to a theoretical course and would be a great text for an
introductory or project-centric course.

About the Programs in This Book

All the program examples in this book are based on OpenCV version 2.0. The code should
definitely work under Linux or Windows and probably under OS-X, too. Source code
for the examples in the book can be fetched from this book’s website (http://www.oreilly
.com/catalog/9780596516130). OpenCV can be loaded from its source forge site (http://
sourceforge.net/projects/opencvlibrary).

OpenCV is under ongoing development, with official releases occurring once or twice
a year. As a rule of thumb, you should obtain your code updates from the source forge
CVS server (http://sourceforge.net/cvs/?group_id=22870).

Prerequisites

For the most part, readers need only know how to program in C and perhaps some C++.
Many of the math sections are optional and are labeled as such. The mathematics in-
volves simple algebra and basic matrix algebra, and it assumes some familiarity with solu-
tion methods to least-squares optimization problems as well as some basic knowledge of
Gaussian distributions, Bayes’ law, and derivatives of simple functions.

The math is in support of developing intuition for the algorithms. The reader may skip
the math and the algorithm descriptions, using only the function definitions and code
examples to get vision applications up and running.

How This Book Is Best Used

This text need not be read in order. It can serve as a kind of user manual: look up the func-
tion when you need it; read the function’s description if you want the gist of how it works
“under the hood”. The intent of this book is more tutorial, however. It gives you a basic
understanding of computer vision along with details of how and when to use selected
algorithms.

This book was written to allow its use as an adjunct or as a primary textbook for an un-
dergraduate or graduate course in computer vision. The basic strategy with this method is
for students to read the book for a rapid overview and then supplement that reading with
more formal sections in other textbooks and with papers in the field. There are exercises
at the end of each chapter to help test the student’s knowledge and to develop further
intuitions.

You could approach this text in any of the following ways.
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Grab Bag
Go through Chapters 1-3 in the first sitting, then just hit the appropriate chapters or
sections as you need them. This book does not have to be read in sequence, except for
Chapters 11 and 12 (Calibration and Stereo).

Good Progress
Read just two chapters a week until you've covered Chapters 1-12 in six weeks (Chap-
ter 13 is a special case, as discussed shortly). Start on projects and start in detail on
selected areas in the field, using additional texts and papers as appropriate.

The Sprint
Just cruise through the book as fast as your comprehension allows, covering Chapters
1-12. Then get started on projects and go into detail on selected areas in the field us-
ing additional texts and papers. This is probably the choice for professionals, but it
might also suit a more advanced computer vision course.

Chapter 13 is a long chapter that gives a general background to machine learning in addi-
tion to details behind the machine learning algorithms implemented in OpenCV and how
to use them. Of course, machine learning is integral to object recognition and a big part
of computer vision, but it’s a field worthy of its own book. Professionals should find this
text a suitable launching point for further explorations of the literature—or for just getting
down to business with the code in that part of the library. This chapter should probably be
considered optional for a typical computer vision class.

This is how the authors like to teach computer vision: Sprint through the course content
at a level where the students get the gist of how things work; then get students started
on meaningful class projects while the instructor supplies depth and formal rigor in
selected areas by drawing from other texts or papers in the field. This same method
works for quarter, semester, or two-term classes. Students can get quickly up and run-
ning with a general understanding of their vision task and working code to match. As
they begin more challenging and time-consuming projects, the instructor helps them
develop and debug complex systems. For longer courses, the projects themselves can
become instructional in terms of project management. Build up working systems first;
refine them with more knowledge, detail, and research later. The goal in such courses is
for each project to aim at being worthy of a conference publication and with a few proj-
ect papers being published subsequent to further (postcourse) work.

Conventions Used in This Book

The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, file extensions, path names,
directories, and Unix utilities.

Constant width
Indicates commands, options, switches, variables, attributes, keys, functions, types,
classes, namespaces, methods, modules, properties, parameters, values, objects,
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events, event handlers, XMLtags, HTMLtags, the contents of files, or the output from
commands.

Constant width bold
Shows commands or other text that should be typed literally by the user. Also used
for emphasis in code samples.

Constant width italic
Shows text that should be replaced with user-supplied values.

[...]

Indicates a reference to the bibliography.

ol o Shows text that should be replaced with user-supplied values. his icon
P signifies a tip, suggestion, or general note.
w .
M) SN

) This icon indicates a warning or caution.

=

Using Code Examples

OpenCV is free for commercial or research use, and we have the same policy on the
code examples in the book. Use them at will for homework, for research, or for commer-
cial products. We would very much appreciate referencing this book when you do, but
it is not required. Other than how it helped with your homework projects (which is best
kept a secret), we would like to hear how you are using computer vision for academic re-
search, teaching courses, and in commercial products when you do use OpenCV to help
you. Again, not required, but you are always invited to drop us a line.

Safari® Books Online

Safari When you see a Safari® Books Online icon on the cover of your favor-
oo jte technology book, that means the book is available online through the
O’Reilly Network Safari Bookshelf.

Safari offers a solution that’s better than e-books. It’s virtual library that lets you easily
search thousands of top tech books, cut and paste code samples, download chapters, and
find quick answers when you need the most accurate, current information. Try it for free
at http://safari.oreilly.com.

We'd Like to Hear from You

Please address comments and questions concerning this book to the publisher:
O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
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800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list examples and any plans for future edi-
tions. You can access this information at:

http://www.oreilly.com/catalog/9780596516130/

You can also send messages electronically. To be put on the mailing list or request a cata-
log, send an email to:

info@oreilly.com
To comment on the book, send an email to:
bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the O’Reilly
Network, see our website at:

http://www.oreilly.com
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CHAPTER 1
Overview

What Is Open(V?

OpenCV [OpenCV] is an open source (see http://opensource.org) computer vision library
available from http://SourceForge.net/projects/opencvlibrary. The library is written in C
and C++ and runs under Linux, Windows and Mac OS X. There is active development
on interfaces for Python, Ruby, Matlab, and other languages.

OpenCV was designed for computational efficiency and with a strong focus on real-
time applications. OpenCV is written in optimized C and can take advantage of mul-
ticore processors. If you desire further automatic optimization on Intel architectures
[Intel], you can buy Intel’s Integrated Performance Primitives (IPP) libraries [IPP], which
consist of low-level optimized routines in many different algorithmic areas. OpenCV
automatically uses the appropriate IPP library at runtime if that library is installed.

One of OpenCV’s goals is to provide a simple-to-use computer vision infrastructure
that helps people build fairly sophisticated vision applications quickly. The OpenCV
library contains over 500 functions that span many areas in vision, including factory
product inspection, medical imaging, security, user interface, camera calibration, stereo
vision, and robotics. Because computer vision and machine learning often go hand-in-
hand, OpenCV also contains a full, general-purpose Machine Learning Library (MLL).
This sublibrary is focused on statistical pattern recognition and clustering. The MLL is
highly useful for the vision tasks that are at the core of OpenCV’s mission, but it is gen-
eral enough to be used for any machine learning problem.

Who Uses OpenCV?

Most computer scientists and practical programmers are aware of some facet of the role
that computer vision plays. But few people are aware of all the ways in which computer
vision is used. For example, most people are somewhat aware of its use in surveillance,
and many also know that it is increasingly being used for images and video on the Web.
A few have seen some use of computer vision in game interfaces. Yet few people realize
that most aerial and street-map images (such as in Google’s Street View) make heavy




use of camera calibration and image stitching techniques. Some are aware of niche ap-
plications in safety monitoring, unmanned flying vehicles, or biomedical analysis. But
few are aware how pervasive machine vision has become in manufacturing: virtually
everything that is mass-produced has been automatically inspected at some point using
computer vision.

The open source license for OpenCV has been structured such that you can build a
commercial product using all or part of OpenCV. You are under no obligation to open-
source your product or to return improvements to the public domain, though we hope
you will. In part because of these liberal licensing terms, there is a large user commu-
nity that includes people from major companies (IBM, Microsoft, Intel, SONY, Siemens,
and Google, to name only a few) and research centers (such as Stanford, MIT, CMU,
Cambridge, and INRIA). There is a Yahoo groups forum where users can post questions
and discussion at http://groups.yahoo.com/group/OpenCV; it has about 20,000 members.
OpenCV is popular around the world, with large user communities in China, Japan,
Russia, Europe, and Israel.

Since its alpha release in January 1999, OpenCV has been used in many applications,
products, and research efforts. These applications include stitching images together in
satellite and web maps, image scan alignment, medical image noise reduction, object
analysis, security and intrusion detection systems, automatic monitoring and safety sys-
tems, manufacturing inspection systems, camera calibration, military applications, and
unmanned aerial, ground, and underwater vehicles. It has even been used in sound and
music recognition, where vision recognition techniques are applied to sound spectro-
gram images. OpenCV was a key part of the vision system in the robot from Stanford,
“Stanley”, which won the $2M DARPA Grand Challenge desert robot race [Thrun06].

What Is Computer Vision?

Computer vision* is the transformation of data from a still or video camera into either a
decision or a new representation. All such transformations are done for achieving some
particular goal. The input data may include some contextual information such as “the
camera is mounted in a car” or “laser range finder indicates an object is 1 meter away”.
The decision might be “there is a person in this scene” or “there are 14 tumor cells on
this slide”. A new representation might mean turning a color image into a grayscale im-
age or removing camera motion from an image sequence.

Because we are such visual creatures, it is easy to be fooled into thinking that com-
puter vision tasks are easy. How hard can it be to find, say, a car when you are staring
at it in an image? Your initial intuitions can be quite misleading. The human brain di-
vides the vision signal into many channels that stream different kinds of information
into your brain. Your brain has an attention system that identifies, in a task-dependent

* Computer vision is a vast field. This book will give you a basic grounding in the field, but we also recom-
mend texts by Trucco [Trucco98] for a simple introduction, Forsyth [Forsyth03] as a comprehensive refer-
ence, and Hartley [Hartley06] and Faugeras [Faugeras93] for how 3D vision really works.
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way, important parts of an image to examine while suppressing examination of other
areas. There is massive feedback in the visual stream that is, as yet, little understood.
There are widespread associative inputs from muscle control sensors and all of the other
senses that allow the brain to draw on cross-associations made from years of living in
the world. The feedback loops in the brain go back to all stages of processing including
the hardware sensors themselves (the eyes), which mechanically control lighting via the
iris and tune the reception on the surface of the retina.

In a machine vision system, however, a computer receives a grid of numbers from the
camera or from disk, and that’s it. For the most part, there’s no built-in pattern recog-
nition, no automatic control of focus and aperture, no cross-associations with years of
experience. For the most part, vision systems are still fairly naive. Figure 1-1 shows a
picture of an automobile. In that picture we see a side mirror on the driver’s side of the
car. What the computer “sees” is just a grid of numbers. Any given number within that
grid has a rather large noise component and so by itself gives us little information, but
this grid of numbers is all the computer “sees”. Our task then becomes to turn this noisy
grid of numbers into the perception: “side mirror”. Figure 1-2 gives some more insight
into why computer vision is so hard.

But the camera sees this:

194 210 201 212 199 213 215 195 178 158 182 209
180 189 190 221 209 205 191 167 147 115 129 163
114 126 140 188 176 165 152 140 170 106 78 88
87 103 115 154 143 142 149 153 173 101 57 57
102 112 106 131 122 138 152 147 128 84 58 66
94 95 79 104 105 124 129 113 107 87 69 67
68 71 69 98 89 92 98 95 89 83 76 67
41 56 68 99 63 45 60 82 58 76 74 65
20 41 69 75 56 41 51 73 55 70 63 44
50 50 57 69 75 75 73 74 53 68 59 37
72 59 53 66 84 92 84 74 57 72 63 42
67 61 58 65 75 78 76 73 59 75 69 50

Figure 1-1. To a computer, the car’s side mirror is just a grid of numbers

In fact, the problem, as we have posed it thus far, is worse than hard; it is formally im-
possible to solve. Given a two-dimensional (2D) view of a 3D world, there is no unique
way to reconstruct the 3D signal. Formally, such an ill-posed problem has no unique or
definitive solution. The same 2D image could represent any of an infinite combination
of 3D scenes, even if the data were perfect. However, as already mentioned, the data is
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Image 1

Image 2

Figure 1-2. The ill-posed nature of vision: the 2D appearance of objects can change radically with
viewpoint

corrupted by noise and distortions. Such corruption stems from variations in the world
(weather, lighting, reflections, movements), imperfections in the lens and mechanical
setup, finite integration time on the sensor (motion blur), electrical noise in the sensor
or other electronics, and compression artifacts after image capture. Given these daunt-
ing challenges, how can we make any progress?

In the design of a practical system, additional contextual knowledge can often be used
to work around the limitations imposed on us by visual sensors. Consider the example
of a mobile robot that must find and pick up staplers in a building. The robot might use
the facts that a desk is an object found inside offices and that staplers are mostly found
on desks. This gives an implicit size reference; staplers must be able to fit on desks. It
also helps to eliminate falsely “recognizing” staplers in impossible places (e.g., on the
ceiling or a window). The robot can safely ignore a 200-foot advertising blimp shaped
like a stapler because the blimp lacks the prerequisite wood-grained background of a
desk. In contrast, with tasks such as image retrieval, all stapler images in a database
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may be of real staplers and so large sizes and other unusual configurations may have
been implicitly precluded by the assumptions of those who took the photographs.
That is, the photographer probably took pictures only of real, normal-sized staplers.
People also tend to center objects when taking pictures and tend to put them in char-
acteristic orientations. Thus, there is often quite a bit of unintentional implicit informa-
tion within photos taken by people.

Contextual information can also be modeled explicitly with machine learning tech-
niques. Hidden variables such as size, orientation to gravity, and so on can then be
correlated with their values in a labeled training set. Alternatively, one may attempt
to measure hidden bias variables by using additional sensors. The use of a laser range
finder to measure depth allows us to accurately measure the size of an object.

The next problem facing computer vision is noise. We typically deal with noise by us-
ing statistical methods. For example, it may be impossible to detect an edge in an image
merely by comparing a point to its immediate neighbors. But if we look at the statistics
over a local region, edge detection becomes much easier. A real edge should appear as a
string of such immediate neighbor responses over a local region, each of whose orienta-
tion is consistent with its neighbors. It is also possible to compensate for noise by taking
statistics over time. Still other techniques account for noise or distortions by building ex-
plicit models learned directly from the available data. For example, because lens distor-
tions are well understood, one need only learn the parameters for a simple polynomial
model in order to describe—and thus correct almost completely—such distortions.

The actions or decisions that computer vision attempts to make based on camera data
are performed in the context of a specific purpose or task. We may want to remove noise
or damage from an image so that our security system will issue an alert if someone tries
to climb a fence or because we need a monitoring system that counts how many people
cross through an area in an amusement park. Vision software for robots that wander
through office buildings will employ different strategies than vision software for sta-
tionary security cameras because the two systems have significantly different contexts
and objectives. As a general rule: the more constrained a computer vision context is, the
more we can rely on those constraints to simplify the problem and the more reliable our
final solution will be.

OpenCV is aimed at providing the basic tools needed to solve computer vision prob-
lems. In some cases, high-level functionalities in the library will be sufficient to solve
the more complex problems in computer vision. Even when this is not the case, the basic
components in the library are complete enough to enable creation of a complete solu-
tion of your own to almost any computer vision problem. In the latter case, there are
several tried-and-true methods of using the library; all of them start with solving the
problem using as many available library components as possible. Typically, after you've
developed this first-draft solution, you can see where the solution has weaknesses and
then fix those weaknesses using your own code and cleverness (better known as “solve
the problem you actually have, not the one you imagine”). You can then use your draft
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solution as a benchmark to assess the improvements you have made. From that point,
whatever weaknesses remain can be tackled by exploiting the context of the larger sys-
tem in which your problem solution is embedded.

The Origin of OpenCV

OpenCV grew out of an Intel Research initiative to advance CPU-intensive applications.
Toward this end, Intel launched many projects including real-time ray tracing and 3D
display walls. One of the authors working for Intel at that time was visiting universities
and noticed that some top university groups, such as the MIT Media Lab, had well-
developed and internally open computer vision infrastructures—code that was passed
from student to student and that gave each new student a valuable head start in develop-
ing his or her own vision application. Instead of reinventing the basic functions from
scratch, a new student could begin by building on top of what came before.

Thus, OpenCV was conceived as a way to make computer vision infrastructure uni-
versally available. With the aid of Intel’s Performance Library Team,* OpenCV started
with a core of implemented code and algorithmic specifications being sent to members
of Intel’s Russian library team. This is the “where” of OpenCV: it started in Intel’s re-
search lab with collaboration from the Software Performance Libraries group together
with implementation and optimization expertise in Russia.

Chief among the Russian team members was Vadim Pisarevsky, who managed, coded,
and optimized much of OpenCV and who is still at the center of much of the OpenCV
effort. Along with him, Victor Eruhimov helped develop the early infrastructure, and
Valery Kuriakin managed the Russian lab and greatly supported the effort. There were
several goals for OpenCV at the outset:

+ Advance vision research by providing not only open but also optimized code for
basic vision infrastructure. No more reinventing the wheel.

« Disseminate vision knowledge by providing a common infrastructure that develop-
ers could build on, so that code would be more readily readable and transferable.

» Advance vision-based commercial applications by making portable, performance-
optimized code available for free—with a license that did not require commercial
applications to be open or free themselves.

Those goals constitute the “why” of OpenCV. Enabling computer vision applications
would increase the need for fast processors. Driving upgrades to faster processors would
generate more income for Intel than selling some extra software. Perhaps that is why this
open and free code arose from a hardware vendor rather than a software company. In
some sense, there is more room to be innovative at software within a hardware company.

In any open source effort, it’s important to reach a critical mass at which the project
becomes self-sustaining. There have now been approximately two million downloads

* Shinn Lee was of key help.
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of OpenCV, and this number is growing by an average of 26,000 downloads a month.
The user group now approaches 20,000 members. OpenCV receives many user contri-
butions, and central development has largely moved outside of Intel.* OpenCV’s past
timeline is shown in Figure 1-3. Along the way, OpenCV was affected by the dot-com
boom and bust and also by numerous changes of management and direction. During
these fluctuations, there were times when OpenCV had no one at Intel working on it at
all. However, with the advent of multicore processors and the many new applications
of computer vision, OpenCV’s value began to rise. Today, OpenCV is an active area
of development at several institutions, so expect to see many updates in multicamera
calibration, depth perception, methods for mixing vision with laser range finders, and
better pattern recognition as well as a lot of support for robotic vision needs. For more
information on the future of OpenCV, see Chapter 14.
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Figure 1-3. OpenCV timeline

Speeding Up OpenCV with IPP

Because OpenCV was “housed” within the Intel Performance Primitives team and sev-
eral primary developers remain on friendly terms with that team, OpenCV exploits the
hand-tuned, highly optimized code in IPP to speed itself up. The improvement in speed
from using IPP can be substantial. Figure 1-4 compares two other vision libraries, LTI
[LTI] and VXL [VXL], against OpenCV and OpenCV using IPP. Note that performance
was a key goal of OpenCV; the library needed the ability to run vision code in real time.

OpenCV is written in performance-optimized C and C++ code. It does not depend in
any way on IPP. If IPP is present, however, OpenCV will automatically take advantage
of IPP by loading IPP’s dynamic link libraries to further enhance its speed.

* As of this writing, Willow Garage [WG] (www.willowgarage.com), a robotics research institute and
incubator, is actively supporting general OpenCV maintenance and new development in the area of
robotics applications.
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Test station: Pentium M, 1.7GHz
Libraries: OpenCV 1.0pre, IPP 5.0, LTI 1.9.14, VXL 1.4.0
2D DFT: Forward Fourier Transform of 512x512 image
Resize: 512x512->384x384 bilinear interpolation, 8-bit 3-channel image
Optical flow: 520 points tracked with 41x41 window, 4 pyramid levels
Neural Net: mushroom benchmark from FANN

Figure 1-4. Two other vision libraries (LTI and VXL) compared with OpenCV (without and with
IPP) on four different performance benchmarks: the four bars for each benchmark indicate scores
proportional to run time for each of the given libraries; in all cases, OpenCV outperforms the other
libraries and OpenCV with IPP outperforms OpenCV without IPP

Who Owns OpenCV?

Although Intel started OpenCV, the library is and always was intended to promote
commercial and research use. It is therefore open and free, and the code itself may be
used or embedded (in whole or in part) in other applications, whether commercial or
research. It does not force your application code to be open or free. It does not require
that you return improvements back to the library—but we hope that you will.

Downloading and Installing OpenCV

The main OpenCV site is on SourceForge at http://SourceForge.net/projects/opencvlibrary
and the OpenCV Wiki [OpenCV Wiki] page is at http://opencvlibrary.SourceForge.net.
For Linux, the source distribution is the file opencv-1.0.0.tar.gz; for Windows, you want
OpenCV_1.0.exe. However, the most up-to-date version is always on the CVS server at
SourceForge.

Install

Once you download the libraries, you must install them. For detailed installation in-
structions on Linux or Mac OS, see the text file named INSTALL directly under the
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.../opencv/ directory; this file also describes how to build and run the OpenCV test-
ing routines. INSTALL lists the additional programs you’ll need in order to become an
OpenCV developer, such as autoconf, automake, libtool, and swig.

Windows

Get the executable installation from SourceForge and run it. It will install OpenCYV, reg-
ister DirectShow filters, and perform various post-installation procedures. You are now
readyto startusing OpenCV. You canalways go to the.../opencv/_makedirectoryand open
opencv.slnwith MSVC++ or MSVC.NET 2005, or you can open opencv.dswwith lower ver-
sions of MSVC++ and build debug versions or rebuild release versions of the library.*

To add the commercial IPP performance optimizations to Windows, obtain and in-
stall IPP from the Intel site (http://www.intel.com/software/products/ipp/index.htm);
use version 5.1 or later. Make sure the appropriate binary folder (e.g., c:/program files/
intel/ipp/5.1/ia32/bin) is in the system path. IPP should now be automatically detected
by OpenCV and loaded at runtime (more on this in Chapter 3).

Linux

Prebuilt binaries for Linux are not included with the Linux version of OpenCV owing
to the large variety of versions of GCC and GLIBC in different distributions (SuSE,
Debian, Ubuntu, etc.). If your distribution doesn’t offer OpenCV, you’ll have to build it
from sources as detailed in the .../opencv/INSTALL file.

To build the libraries and demos, you’ll need GTK+ 2.x or higher, including headers.
You'll also need pkgconfig, libpng, zlib, libjpeg, libtiff, and libjasper with development
files. You’ll need Python 2.3, 2.4, or 2.5 with headers installed (developer package).
You will also need libavcodec and the other libav* libraries (including headers) from
[ffmpeg 0.4.9-pre1 or later (svn checkout svn://svn.mplayerhq.hu/ffmpeg/trunk ffmpeg).

Download fimpeg from http://ffmpeg.mplayerhq.hu/download.htmlT The fimpeg pro-
gram has a lesser general public license (LGPL). To use it with non-GPL software (such
as OpenCV), build and use a shared ffmpg library:

$> ./configure --enable-shared

$> make

$> sudo make install
You will end up with: /usr/local/lib/libavcodec.so.”, /ust/local/lib/libavformat.so.*,
/ust/local/lib/libavutil.so.*, and include files under various /usr/local/include/libav*.

To build OpenCV once it is downloaded:*

* It is important to know that, although the Windows distribution contains binary libraries for release builds,
it does not contain the debug builds of these libraries. It is therefore likely that, before developing with
OpenCV, you will want to open the solution file and build these libraries for yourself.

T You can check out fimpeg by: svn checkout svn://svn.mplayerhq.hu/ffmpeg/trunk ffmpeg.

% To build OpenCV using Red Hat Package Managers (RPMs), use rpmbuild -ta OpenCV-x.y.z.tar.gz (for
RPM 4.x or later), or rpm -ta OpenCV-x.y.z.tar.gz (for earlier versions of RPM), where OpenCV-x.y.z.tar
.gz should be put in /ust/src/redhat/SOURCES/ or a similar directory. Then install OpenCV using rpm -i
OpenCV-x.y.z.*.xpm.
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$> ./configure

$> make

$> sudo make install

$> sudo ldconfig
After installation is complete, the default installation path is /ust/local/lib/ and /usr/
local/include/opencv/. Hence you need to add /usr/local/lib/ to /etc/ld.so.conf (and run
ldconfig afterwards) or add it to the LD LIBRARY PATH environment variable; then you
are done.

To add the commercial IPP performance optimizations to Linux, install IPP as de-
scribed previously. Let’s assume it was installed in Jopt/intel/ipp/5.1/ia32/. Add <your
install_path>/bin/ and <your install_path>/bin/linux32 LD_LIBRARY_PATH in your initial-
ization script (.bashrc or similar):

LD LIBRARY PATH=/opt/intel/ipp/5.1/ia32/bin:/opt/intel/ipp/5.1
/ia32/bin/1inux32:$LD_LIBRARY PATH
export LD _LIBRARY PATH

Alternatively, you can add <your install_path>/bin and <your install_path>/bin/linux32,
one per line, to /etc/ld.so.conf and then run Ildconfig as root (or use sudo).

That’s it. Now OpenCV should be able to locate IPP shared libraries and make use of
them on Linux. See .../opencv/INSTALL for more details.

Mac0S X
As of this writing, full functionality on MacOS X is a priority but there are still some
limitations (e.g., writing AVIs); these limitations are described in .../opencv/INSTALL.
The requirements and building instructions are similar to the Linux case, with the fol-
lowing exceptions:

o By default, Carbon is used instead of GTK+.

By default, QuickTime is used instead of ffmpeg.

o pkg-config is optional (it is used explicitly only in the samples/c/build_all.sh script).

o RPM and ldconfig are not supported by default. Use configure+make+sudo make
install to build and install OpenCV, update LD LIBRARY PATH (unless ./configure
--prefix=/usr is used).

For full functionality, you should install libpng, libtiff, libjpeg and libjasper from
darwinports and/or fink and make them available to ./configure (see ./configure
--help). For the most current information, see the OpenCV Wiki at http://opencvlibrary
.SourceForge.net/ and the Mac-specific page http://opencvlibrary.SourceForge.net/
Mac_OS_X_OpenCV_Port.

Getting the Latest OpenCV via CVS

OpenCV is under active development, and bugs are often fixed rapidly when bug re-
ports contain accurate descriptions and code that demonstrates the bug. However,
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official OpenCV releases occur only once or twice a year. If you are seriously develop-
ing a project or product, you will probably want code fixes and updates as soon as they
become available. To do this, you will need to access OpenCV’s Concurrent Versions
System (CVS) on SourceForge.

This isn’t the place for a tutorial in CVS usage. If you've worked with other open source
projects then you're probably familiar with it already. If you haven’t, check out Essential
CVS by Jennifer Vesperman (O’Reilly). A command-line CVS client ships with Linux,
OS X, and most UNIX-like systems. For Windows users, we recommend TortoiseCVS
(http://www.tortoisecvs.org/), which integrates nicely with Windows Explorer.

On Windows, if you want the latest OpenCV from the CVS repository then you’ll need

to access the CVSROOT directory:
:pserver:anonymous@opencvlibrary.cvs.sourceforge.net:2401/cvsroot/opencvlibrary

On Linux, you can just use the following two commands:

cvs -d:pserver:anonymous@opencvlibrary.cvs.sourceforge.net:/cvsroot/opencvlibrary
login

When asked for password, hit return. Then use:

cvs -z3 -d:pserver:anonymous@opencvlibrary.cvs.sourceforge.net:/cvsroot/opencvlibrary
co -P opencv

More OpenCV Documentation

The primary documentation for OpenCV is the HTML documentation that ships with
the source code. In addition to this, the OpenCV Wiki and the older HTML documen-
tation are available on the Web.

Documentation Available in HTML

OpenCV ships with html-based user documentation in the .../opencv/docs subdirectory.
Load the index.htm file, which contains the following links.

CXCORE
Contains data structures, matrix algebra, data transforms, object persistence, mem-
ory management, error handling, and dynamic loading of code as well as drawing,
text and basic math.

cv
Contains image processing, image structure analysis, motion and tracking, pattern
recognition, and camera calibration.

Machine Learning (ML)
Contains many clustering, classification and data analysis functions.

HighGUI
Contains user interface GUI and image/video storage and recall.
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CVCAM
Camera interface.

Haartraining
How to train the boosted cascade object detector. This is in the .../opencv/apps/
HaarTraining/doc/haartraining htm file.

The .../opencv/docs directory also contains IPLMAN.pdf, which was the original manual
for OpenCV. It is now defunct and should be used with caution, but it does include de-
tailed descriptions of algorithms and of what image types may be used with a particular
algorithm. Of course, the first stop for such image and algorithm details is the book you
are reading now.

Documentation via the Wiki

OpenCV’s documentation Wiki is more up-to-date than the html pages that ship with
OpenCV and it also features additional content as well. The Wiki is located at http:/
opencvlibrary.SourceForge.net. It includes information on:

« Instructions on compiling OpenCV using Eclipse IDE
« Face recognition with OpenCV

« Video surveillance library

« Tutorials

o Camera compatibility

o Links to the Chinese and the Korean user groups

Another Wiki, located at http://opencvlibrary.SourceForge.net/CvAux, is the only doc-
umentation of the auxiliary functions discussed in “OpenCV Structure and Content”
(next section). CvAux includes the following functional areas:

o Stereo correspondence

« View point morphing of cameras

3D tracking in stereo

 Eigen object (PCA) functions for object recognition
o Embedded hidden Markov models (HMMs)

This Wiki has been translated into Chinese at http://www.opencv.org.cn/index.php/
%E9%A6%96%EI%A1%B5.

Regardless of your documentation source, it is often hard to know:

o Which image type (floating, integer, byte; 1-3 channels) works with which
function

o  Which functions work in place

o Details of how to call the more complex functions (e.g., contours)
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o Details about running many of the examples in the .../opencv/samples/c/ directory
o What to do, not just how
» How to set parameters of certain functions

One aim of this book is to address these problems.

OpenCV Structure and Content

OpenCV is broadly structured into five main components, four of which are shown in
Figure 1-5. The CV component contains the basic image processing and higher-level
computer vision algorithms; ML is the machine learning library, which includes many
statistical classifiers and clustering tools. HighGUI contains I/O routines and functions
for storing and loading video and images, and CXCore contains the basic data struc-
tures and content.

cv MLL HighGUI
Image processing Statistical Classifiers GUI,

and and Image and
Vision Algorithms Clustering Tools Video I/O

\Z \Z \Z

CXCORE

basic structures and algorithms,
XML support, drawing functions

Figure 1-5. The basic structure of OpenCV

Figure 1-5 does not include CvAux, which contains both defunct areas (embedded HMM
face recognition) and experimental algorithms (background/foreground segmentation).
CvAux is not particularly well documented in the Wiki and is not documented at all in
the .../opencv/docs subdirectory. CvAux covers:

« Eigen objects, a computationally efficient recognition technique that is, in essence, a
template matching procedure

« 1D and 2D hidden Markov models, a statistical recognition technique solved by
dynamic programming

+ Embedded HMM:s (the observations of a parent HMM are themselves HMMs)
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» Gesture recognition from stereo vision support

« Extensions to Delaunay triangulation, sequences, and so forth
o Stereo vision

« Shape matching with region contours

o Texture descriptors

+ Eye and mouth tracking

o 3D tracking

« Finding skeletons (central lines) of objects in a scene

« Warping intermediate views between two camera views

« Background-foreground segmentation

o Video surveillance (see Wiki FAQ for more documentation)

o Camera calibration C++ classes (the C functions and engine are in CV)

Some of these features may migrate to CV in the future; others probably never will.

Portability

OpenCV was designed to be portable. It was originally written to compile across Bor-
land C++, MSVC++, and the Intel compilers. This meant that the C and C++ code had
to be fairly standard in order to make cross-platform support easier. Figure 1-6 shows
the platforms on which OpenCV is known to run. Support for 32-bit Intel architecture
(IA32) on Windows is the most mature, followed by Linux on the same architecture.
Mac OS X portability became a priority only after Apple started using Intel processors.
(The OS X port isn’t as mature as the Windows or Linux versions, but this is changing
rapidly.) These are followed by 64-bit support on extended memory (EM64T) and the
64-bit Intel architecture (IA64). The least mature portability is on Sun hardware and
other operating systems.

If an architecture or OS doesn’t appear in Figure 1-6, this doesn’t mean there are no
OpenCV ports to it. OpenCV has been ported to almost every commercial system, from
PowerPC Macs to robotic dogs. OpenCV runs well on AMD’s line of processors, and
even the further optimizations available in IPP will take advantage of multimedia ex-
tensions (MMX) in AMD processors that incorporate this technology.
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I1A32 EM64T I1A64 Other (PPC,
Sparc)

Windows |y (. Ipp; v’ (w. IPP; *(w. IPP; N/A

MSVCe6, MSVC6+PSDK.NE PSDK, some

.NET2005+OMP, | T2005+OMP, PSDK) | tests fail)

ICC, GCC, BCQ)
Linux v’ (w. IPP; v w.IPP;Gec, |V (GCG, IcO) | %

GCC, BCQ) BCQ)
MacOSX |y . IPP,GCC, |2 (nottested)  |N/A v (iMac G5, GCC,

native APIs) native APIs)
Others Reported to build
(BSD, x x x on UltraSparc
Solaris...) Solaris

Figure 1-6. OpenCV portability guide for release 1.0: operating systems are shown on the left; com-
puter architecture types across top

Exercises

1. Download and install the latest release of OpenCV. Compile it in debug and release

mode.

2. Download and build the latest CVS update of OpenCV.

3. Describe at least three ambiguous aspects of converting 3D inputs into a 2D repre-
sentation. How would you overcome these ambiguities?

Exercises
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CHAPTER 2
Introduction to OpenCV

Getting Started

After installing the OpenCV library, our first task is, naturally, to get started and make
something interesting happen. In order to do this, we will need to set up the program-
ming environment.

In Visual Studio, it is necessary to create a project and to configure the setup so that
(a) the libraries highgui.lib, cxcore.lib, ml.lib, and cv.lib are linked* and (b) the prepro-
cessor will search the OpenCV .../opencv/*/include directories for header files. These
“include” directories will typically be named something like C:/program files/opencv/
cv/include,t ...Jopencvicxcore/include, .../opencv/ml/include, and .../opencv/otherlibs/
highgui. Once you've done this, you can create a new C file and start your first program.
A s

Certain key header files can make your life much easier. Many useful

macros are in the header files .../opencv/cxcore/include/cxtypes.h and

Ylss cxmisc.h. These can do things like initialize structures and arrays in one

* line, sort lists, and so on. The most important headers for compiling are
.../ev/include/cv.h and .../cxcore/include/cxcore.h for computer vision,
.../otherlibs/highgui/highgui.h for 1/O, and .../ml/include/ml.h for ma-
chine learning.

First Program—Display a Picture

OpenCV provides utilities for reading from a wide array of image file types as well as
from video and cameras. These utilities are part of a toolkit called HighGUI, which is
included in the OpenCV package. We will use some of these utilities to create a simple
program that opens an image and displays it on the screen. See Example 2-1.

* For debug builds, you should link to the libraries highguid.lib, cxcored.lib, mld.lib, and cvd.lib.

+ C:/program files/ is the default installation of the OpenCV directory on Windows, although you can choose
to install it elsewhere. To avoid confusion, from here on we’ll use “.../opencv/” to mean the path to the
opencv directory on your system.
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Example 2-1. A simple OpenCV program that loads an image from disk and displays it on the screen
#include “highgui.h”

int main( int argc, char** argv ) {
IplImage* img = cvLoadImage( argv[i] );
cvNamedwindow( “Examplel”, CV_WINDOW_AUTOSIZE );
cvShowImage( “Examplel”, img );
cviWaitKey(0);
cvReleaseImage( &img );
cvDestroyWindow( “Examplel” );

}

When compiled and run from the command line with a single argument, this program
loads an image into memory and displays it on the screen. It then waits until the user
presses a key, at which time it closes the window and exits. Let’s go through the program
line by line and take a moment to understand what each command is doing.

IplImage* img = cvloadImage( argv[1] );
This line loads the image.* The function cvLoadImage() is a high-level routine that deter-
mines the file format to be loaded based on the file name; it also automatically allocates
the memory needed for the image data structure. Note that cvLoadImage() can read a
wide variety of image formats, including BMP, DIB, JPEG, JPE, PNG, PBM, PGM, PPM,
SR, RAS, and TIFF. A pointer to an allocated image data structure is then returned.
This structure, called IplImage, is the OpenCV construct with which you will deal
the most. OpenCV uses this structure to handle all kinds of images: single-channel,
multichannel, integer-valued, floating-point-valued, et cetera. We use the pointer that
cvLoadImage() returns to manipulate the image and the image data.

cvNamedwindow( “Example1”, CV_WINDOW_AUTOSIZE );
Another high-level function, cvNamedWindow(), opens a window on the screen that can
contain and display an image. This function, provided by the HighGUT library, also as-
signs a name to the window (in this case, “Example1”). Future HighGUI calls that inter-
act with this window will refer to it by this name.

The second argument to cvNamedWindow() defines window properties. It may be set ei-
ther to 0 (the default value) or to CV_WINDOW_AUTOSIZE. In the former case, the size of the
window will be the same regardless of the image size, and the image will be scaled to
fit within the window. In the latter case, the window will expand or contract automati-
cally when an image is loaded so as to accommodate the image’s true size.
cvShowImage( “Examplel”, img );

Whenever we have an image in the form of an IplImage* pointer, we can display it in an
existing window with cvShowImage(). The cvShowImage() function requires that a named
window already exist (created by cvNamedWindow()). On the call to cvShowImage(), the

* A proper program would check for the existence of argv[1] and, in its absence, deliver an instructional
error message for the user. We will abbreviate such necessities in this book and assume that the reader is
cultured enough to understand the importance of error-handling code.
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window will be redrawn with the appropriate image in it, and the window will resize
itself as appropriate if it was created using the Cv_WINDOW AUTOSIZE flag.

cviaitkey(0);
The cviaitKey() function asks the program to stop and wait for a keystroke. If a positive
argument is given, the program will wait for that number of milliseconds and then con-
tinue even if nothing is pressed. If the argument is set to 0 or to a negative number, the
program will wait indefinitely for a keypress.

cvReleaseImage( &img );
Once we are through with an image, we can free the allocated memory. OpenCV ex-
pects a pointer to the IplImage* pointer for this operation. After the call is completed,
the pointer img will be set to NULL.

cvDestroyWindow( “Example1” );
Finally, we can destroy the window itself. The function cvDestroyWindow() will close the
window and de-allocate any associated memory usage (including the window’s internal
image buffer, which is holding a copy of the pixel information from *img). For a simple
program, you don’t really have to call cvDestroyWindow() or cvReleaseImage() because all
the resources and windows of the application are closed automatically by the operating
system upon exit, but it’s a good habit anyway.

Now that we have this simple program we can toy around with it in various ways, but we
don’t want to get ahead of ourselves. Our next task will be to construct a very simple—
almost as simple as this one—program to read in and display an AVI video file. After
that, we will start to tinker a little more.

Second Program—AVI Video

Playing a video with OpenCV is almost as easy as displaying a single picture. The only new
issue we face is that we need some kind of loop to read each frame in sequence; we may
also need some way to get out of that loop if the movie is too boring. See Example 2-2.

Example 2-2. A simple OpenCV program for playing a video file from disk
#include “highgui.h”

int main( int argc, char** argv ) {
cvNamedWindow( “Example2”, CV_WINDOW_AUTOSIZE );
CvCapture* capture = cvCreateFileCapture( argv[i] );
IplImage* frame;
while(1) {
frame = cvQueryFrame( capture );
if( !frame ) break;
cvShowImage( “Example2”, frame );
char ¢ = cviaitKey(33);
if( ¢ == 27 ) break;
}
cvReleaseCapture( &capture );
cvDestroyWindow( “Example2” );
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Here we begin the function main() with the usual creation of a named window, in this
case “Example2”. Things get a little more interesting after that.

CvCapture* capture = cvCreateFileCapture( argv[i] );
The function cvCreateFileCapture() takes as its argument the name of the AVI file to be
loaded and then returns a pointer to a CvCapture structure. This structure contains all of
the information about the AVI file being read, including state information. When cre-
ated in this way, the CvCapture structure is initialized to the beginning of the AVI.

frame = cvQueryFrame( capture );
Once inside of the while(1) loop, we begin reading from the AVT file. cvQueryFrame()
takes as its argument a pointer to a CvCapture structure. It then grabs the next video
frame into memory (memory that is actually part of the CvCapture structure). A pointer
is returned to that frame. Unlike cvLoadImage, which actually allocates memory for the
image, cvQueryFrame uses memory already allocated in the CvCapture structure. Thus it
will not be necessary (or wise) to call cvReleaseImage() for this “frame” pointer. Instead,
the frame image memory will be freed when the CvCapture structure is released.

¢ = cvhaitKey(33);

if( ¢ == 27 ) break;
Once we have displayed the frame, we then wait for 33 ms.* If the user hits a key, then ¢
will be set to the ASCII value of that key; if not, then it will be set to -1. If the user hits
the Esc key (ASCII 27), then we will exit the read loop. Otherwise, 33 ms will pass and
we will just execute the loop again.

It is worth noting that, in this simple example, we are not explicitly controlling
the speed of the video in any intelligent way. We are relying solely on the timer in
cviaitKey() to pace the loading of frames. In a more sophisticated application it would
be wise to read the actual frame rate from the CvCapture structure (from the AVI) and
behave accordingly!
cvReleaseCapture( 8capture );

When we have exited the read loop—because there was no more video data or because
the user hit the Esc key—we can free the memory associated with the CvCapture struc-
ture. This will also close any open file handles to the AVI file.

Moving Around

OK, that was great. Now it’s time to tinker around, enhance our toy programs, and ex-
plore a little more of the available functionality. The first thing we might notice about
the AVT player of Example 2-2 is that it has no way to move around quickly within the
video. Our next task will be to add a slider bar, which will give us this ability.

* You can wait any amount of time you like. In this case, we are simply assuming that it is correct to play
the video at 30 frames per second and allow user input to interrupt between each frame (thus we pause
for input 33 ms between each frame). In practice, it is better to check the CvCapture structure returned by
cvCaptureFromCamera() in order to determine the actual frame rate (more on this in Chapter 4).
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The HighGUI toolkit provides a number of simple instruments for working with im-
ages and video beyond the simple display functions we have just demonstrated. One
especially useful mechanism is the slider, which enables us to jump easily from one part
of a video to another. To create a slider, we call cvCreateTrackbar() and indicate which
window we would like the trackbar to appear in. In order to obtain the desired func-
tionality, we need only supply a callback that will perform the relocation. Example 2-3
gives the details.

Example 2-3. Program to add a trackbar slider to the basic viewer window: when the slider is
moved, the function onTrackbarSlide() is called and then passed to the slider’s new value

#include “cv.h”
#include “highgui.h”

int g slider position = 0;
CvCapture* g_capture = NULL;

void onTrackbarSlide(int pos) {
cvSetCaptureProperty(
g_capture,
CV_CAP PROP POS_FRAMES,
pos

)

int main( int argc, char** argv ) {
cvNamedWindow( “Example3”, CV_WINDOW_ AUTOSIZE );
g_capture = cvCreateFileCapture( argv[i] );
int frames = (int) cvGetCaptureProperty(
g_capture,
CV_CAP_PROP_FRAME_COUNT
)i
if( frames!= 0 ) {
cvCreateTrackbar(
“Position”,
“Example3”,
&g_slider position,
frames,
onTrackbarSlide
);
}
IplImage* frame;
// While loop (as in Example 2) capture & show video

// Release memory and destroy window

return(0);

}

In essence, then, the strategy is to add a global variable to represent the slider position
and then add a callback that updates this variable and relocates the read position in the
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video. One call creates the slider and attaches the callback, and we are off and running.*
Let’s look at the details.

int g_slider position = 0;
CvCapture* g capture = NULL;

First we define a global variable for the slider position. The callback will need access to
the capture object, so we promote that to a global variable. Because we are nice people
and like our code to be readable and easy to understand, we adopt the convention of
adding a leading g_ to any global variable.
void onTrackbarSlide(int pos) {

cvSetCaptureProperty(

g capture,

CV_CAP_PROP_POS_FRAMES,

pos

);

Now we define a callback routine to be used when the user pokes the slider. This routine
will be passed to a 32-bit integer, which will be the slider position.

The call to cvSetCaptureProperty() is one we will see often in the future, along with its
counterpart cvGetCaptureProperty(). These routines allow us to configure (or query in
the latter case) various properties of the CvCapture object. In this case we pass the argu-
ment CV_CAP PROP_POS_FRAMES, which indicates that we would like to set the read position
in units of frames. (We can use AVI_RATIO instead of FRAMES if we want to set the position
as a fraction of the overall video length). Finally, we pass in the new value of the posi-
tion. Because HighGUI is highly civilized, it will automatically handle such issues as
the possibility that the frame we have requested is not a key-frame; it will start at the
previous key-frame and fast forward up to the requested frame without us having to
fuss with such details.
int frames = (int) cvGetCaptureProperty(

g capture,
CV_CAP_PROP_FRAME_COUNT

);
As promised, we use cvGetCaptureProperty()when we want to query some data from the
CvCapture structure. In this case, we want to find out how many frames are in the video
so that we can calibrate the slider (in the next step).

if( frames!= 0 ) {
cvCreateTrackbar(
“Position”,
“Example3”,
&g _slider position,
frames,
onTrackbarSlide
);
}

* This code does not update the slider position as the video plays; we leave that as an exercise for the reader.
Also note that some mpeg encodings do not allow you to move backward in the video.
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The last detail is to create the trackbar itself. The function cvCreateTrackbar() allows us
to give the trackbar a label* (in this case Position) and to specify a window to put the
trackbar in. We then provide a variable that will be bound to the trackbar, the maxi-
mum value of the trackbar, and a callback (or NULL if we don’t want one) for when the
slider is moved. Observe that we do not create the trackbar if cvGetCaptureProperty()
returned a zero frame count. This is because sometimes, depending on how the video
was encoded, the total number of frames will not be available. In this case we will just
play the movie without providing a trackbar.

It is worth noting that the slider created by HighGUI is not as full-featured as some slid-
ers out there. Of course, there’s no reason you can’t use your favorite windowing toolkit
instead of HighGUT, but the HighGUT tools are quick to implement and get us off the
ground in a hurry.

Finally, we did not include the extra tidbit of code needed to make the slider move as the
video plays. This is left as an exercise for the reader.

A Simple Transformation

Great, so now you can use OpenCV to create your own video player, which will not be
much different from countless video players out there already. But we are interested in
computer vision, and we want to do some of that. Many basic vision tasks involve the
application of filters to a video stream. We will modify the program we already have to
do a simple operation on every frame of the video as it plays.

One particularly simple operation is the smoothing of an image, which effectively re-
duces the information content of the image by convolving it with a Gaussian or other
similar kernel function. OpenCV makes such convolutions exceptionally easy to do. We
can start by creating a new window called “Example4-out”, where we can display the
results of the processing. Then, after we have called cvShowImage() to display the newly
captured frame in the input window, we can compute and display the smoothed image
in the output window. See Example 2-4.

Example 2-4. Loading and then smoothing an image before it is displayed on the screen

#include “cv.h”
#include “highgui.h”

void example2 4( IplImage* image )

// Create some windows to show the input
// and output images in.
//

cvNamedWindow( “Example4-in” );

* Because HighGUT is a lightweight and easy-to-use toolkit, cvCreateTrackbar() does not distinguish
between the name of the trackbar and the label that actually appears on the screen next to the trackbar. You
may already have noticed that cvNamedWindow() likewise does not distinguish between the name of the
window and the label that appears on the window in the GUI.
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Example 2-4. Loading and then smoothing an image before it is displayed on the screen (continued)

cvNamedWindow( “Example4-out” );

// Create a window to show our input image

/

cvShowImage( “Example4-in”, image );

// Create an image to hold the smoothed output
/
IplImage* out = cvCreateImage(
cvGetSize(image),
TPL_DEPTH 8U,
3
)s

// Do the smoothing

/
cvSmooth( image, out, CV GAUSSIAN, 3, 3 );

// Show the smoothed image in the output window
//

cvShowImage( “Example4-out”, out );

// Be tidy
/

cvReleaseImage( &out );

// Wait for the user to hit a key, then clean up the windows

/

cviaitkey( 0 );

cvDestroyWindow( “Example4-in” );
cvDestroyWindow( “Example4-out” );

}

The first call to cvShowImage() is no different than in our previous example. In the next
call, we allocate another image structure. Previously we relied on cvCreateFileCapture()
to allocate the new frame for us. In fact, that routine actually allocated only one frame
and then wrote over that data each time a capture call was made (so it actually returned
the same pointer every time we called it). In this case, however, we want to allocate our
own image structure to which we can write our smoothed image. The first argument is
a CvSize structure, which we can conveniently create by calling cvGetSize(image); this
gives us the size of the existing structure image. The second argument tells us what kind
of data type is used for each channel on each pixel, and the last argument indicates the
number of channels. So this image is three channels (with 8 bits per channel) and is the
same size as image.

The smoothing operation is itself just a single call to the OpenCV library: we specify
the input image, the output image, the smoothing method, and the parameters for the
smooth. In this case we are requesting a Gaussian smooth over a 3 x 3 area centered on
each pixel. It is actually allowed for the output to be the same as the input image, and
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this would work more efficiently in our current application, but we avoided doing this
because it gave us a chance to introduce cvCreateImage()!

Now we can show the image in our new second window and then free it: cvReleaseImage()
takes a pointer to the IplImage* pointer and then de-allocates all of the memory associ-
ated with that image.

A Not-So-Simple Transformation

That was pretty good, and we are learning to do more interesting things. In Example 2-4
we chose to allocate a new IplImage structure, and into this new structure we wrote the
output of a single transformation. As mentioned, we could have applied the transforma-
tion in such a way that the output overwrites the original, but this is not always a good
idea. In particular, some operators do not produce images with the same size, depth,
and number of channels as the input image. Typically, we want to perform a sequence of
operations on some initial image and so produce a chain of transformed images.

In such cases, it is often useful to introduce simple wrapper functions that both allocate
the output image and perform the transformation we are interested in. Consider, for
example, the reduction of an image by a factor of 2 [Rosenfeld80]. In OpenCV this is ac-
complished by the function cvPyrDown(), which performs a Gaussian smooth and then
removes every other line from an image. This is useful in a wide variety of important
vision algorithms. We can implement the simple function described in Example 2-5.

Example 2-5. Using cvPyrDown() to create a new image that is half the width and height of the input
image
IplImage* doPyrDown(
IplImage* in,
int filter = IPL_GAUSSIAN_5x5
) 1

// Best to make sure input image is divisible by two.

/
assert( in->width%2 == 0 & in->height%2 == 0 );

IplImage* out = cvCreateImage(
cvSize( in->width/2, in->height/2 ),
in->depth,
in->nChannels

);

cvPyrDown( in, out );

return( out );

}

Notice that we allocate the new image by reading the needed parameters from the old
image. In OpenCV, all of the important data types are implemented as structures and
passed around as structure pointers. There is no such thing as private data in OpenCV!
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Let’s now look at a similar but slightly more involved example involving the Canny edge
detector [Canny86] (see Example 2-6). In this case, the edge detector generates an image
that is the full size of the input image but needs only a single channel image to write to.

Example 2-6. The Canny edge detector writes its output to a single channel (grayscale) image
IplImage* doCanny(

IplImage* in,

double lowThresh,

double highThresh,

double aperture

) 1
If(in->nChannels 1= 1)
return(0); //Canny only handles gray scale images

IplImage* out = cvCreateImage(
cvSize( cvGetSize( in ),
IPL_DEPTH 8U,
1
);
cvCanny( in, out, lowThresh, highThresh, aperture );
return( out );

I

This allows us to string together various operators quite easily. For example, if we wanted
to shrink the image twice and then look for lines that were present in the twice-reduced
image, we could proceed as in Example 2-7.

Example 2-7. Combining the pyramid down operator (twice) and the Canny subroutine in a simple
image pipeline

IplImage* imgl = doPyrDown( in, IPL_GAUSSIAN 5X5 );

IplImage* img2 = doPyrDown( imgl, IPL GAUSSIAN 5x5 );

IplImage* img3 = doCanny( img2, 10, 100, 3 );

// do whatever with ‘img3’
/

cvReleaseImage( &imgl );
cvReleaseImage( &img2 );
cvReleaseImage( &img3 );

It is important to observe that nesting the calls to various stages of our filtering pipeline
is not a good idea, because then we would have no way to free the images that we are
allocating along the way. If we are too lazy to do this cleanup, we could opt to include
the following line in each of the wrappers:
cvReleaseImage( &in );
This “self-cleaning” mechanism would be very tidy, but it would have the following dis-
advantage: if we actually did want to do something with one of the intermediate images,
we would have no access to it. In order to solve that problem, the preceding code could
be simplified as described in Example 2-8.
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Example 2-8. Simplifying the image pipeline of Example 2-7 by making the individual stages release
their intermediate memory allocations

IplImage* out;

out = doPyrDown( in, IPL_GAUSSIAN 5x5 );
out = doPyrDown( out, IPL GAUSSIAN 5x5 );
out = doCanny( out, 10, 100, 3 );

// do whatever with ‘out’

/

cvReleaseImage ( &out );

One final word of warning on the self-cleaning filter pipeline: in OpenCV we must al-
ways be certain that an image (or other structure) being de-allocated is one that was,
in fact, explicitly allocated previously. Consider the case of the IplImage* pointer re-
turned by cvCreateFileCapture(). Here the pointer points to a structure allocated as
part of the CvCapture structure, and the target structure is allocated only once when the
CvCapture is initialized and an AVT is loaded. De-allocating this structure with a call to
cvReleaseImage() would result in some nasty surprises. The moral of this story is that,
although it’s important to take care of garbage collection in OpenCV, we should only
clean up the garbage that we have created.

Input from a Camera

Vision can mean many things in the world of computers. In some cases we are analyz-
ing still frames loaded from elsewhere. In other cases we are analyzing video that is be-
ing read from disk. In still other cases, we want to work with real-time data streaming
in from some kind of camera device.

OpenCV—more specifically, the HighGUI portion of the OpenCV library—provides us
with an easy way to handle this situation. The method is analogous to how we read
AVTs. Instead of calling cvCreateFileCapture(), we call cvCreateCameraCapture(). The
latter routine does not take a file name but rather a camera ID number as its argument.
Of course, this is important only when multiple cameras are available. The default value
is -1, which means “just pick one”; naturally, this works quite well when there is only
one camera to pick (see Chapter 4 for more details).

The cvCreateCameraCapture() function returns the same CvCapture* pointer, which we
can hereafter use exactly as we did with the frames grabbed from a video stream. Of
course, a lot of work is going on behind the scenes to make a sequence of camera images
look like a video, but we are insulated from all of that. We can simply grab images from
the camera whenever we are ready for them and proceed as if we did not know the dif-
ference. For development reasons, most applications that are intended to operate in real
time will have a video-in mode as well, and the universality of the CvCapture structure
makes this particularly easy to implement. See Example 2-9.
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Example 2-9. After the capture structure is initialized, it no longer matters whether the image is
from a camera or a file

CvCapture* capture;

if( arge==1 ) {
capture = cvCreateCameraCapture(0);
} else {
capture = cvCreateFileCapture( argv[1] );

}
assert( capture != NULL );

// Rest of program proceeds totally ignorant

As you can see, this arrangement is quite ideal.

Writing to an AVI File

In many applications we will want to record streaming input or even disparate captured
images to an output video stream, and OpenCV provides a straightforward method for
doing this. Just as we are able to create a capture device that allows us to grab frames
one at a time from a video stream, we are able to create a writer device that allows us
to place frames one by one into a video file. The routine that allows us to do this is
cvCreateVideoWriter().

Once this call has been made, we may successively call cviriteFrame(), once for each
frame, and finally cvReleaseVideoWriter() when we are done. Example 2-10 describes
a simple program that opens a video file, reads the contents, converts them to a log-
polar format (something like what your eye actually sees, as described in Chapter 6),
and writes out the log-polar image to a new video file.

Example 2-10. A complete program to read in a color video and write out the same video in grayscale

// Convert a video to grayscale
// argv[1]: input video file
// argv[2]: name of new output file
/
#include “cv.h”
#include “highgui.h”
main( int argc, char* argv[] ) {
CvCapture* capture = 0;
capture = cvCreateFileCapture( argv[1] );
if(Icapture){
return -1;
}

IplImage *bgr frame=cvQueryFrame(capture);//Init the video read
double fps = cvGetCaptureProperty (

capture,

CV_CAP_PROP_FPS
);
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Example 2-10. A complete program to read in a color video and write out the same video in
grayscale (continued)

CvSize size = cvSize(
(int)cvGetCaptureProperty( capture, CV_CAP PROP FRAME WIDTH),
(int)cvGetCaptureProperty( capture, CV_CAP PROP FRAME HEIGHT)

);
CvVideoWriter *writer = cvCreateVideoWriter(
argv[2],
CV_FOURCC(‘W’,¢3’,“P’,G’),
fps,
size
);
IplImage* logpolar frame = cvCreateImage(
size,
IPL_DEPTH_8U,
3
);

while( (bgr frame=cvQueryFrame(capture)) != NULL ) {
cvLogPolar( bgr frame, logpolar frame,
cvPoint2D32f(bgr frame->width/2,
bgr frame->height/2),
40,
CV_INTER LINEAR+CV WARP FILL OUTLIERS );
cviWriteFrame( writer, logpolar frame );

}

cvReleaseVideoWriter( &writer );
cvReleaseImage( &logpolar frame );
cvReleaseCapture( 8capture );
return(0);

}

Looking over this program reveals mostly familiar elements. We open one video; start
reading with cvQueryFrame(), which is necessary to read the video properties on some
systems; and then use cvGetCaptureProperty() to ascertain various important proper-
ties of the video stream. We then open a video file for writing, convert the frame to log-
polar format, and write the frames to this new file one at a time until there are none left.
Then we close up.

The call to cvCreateVideoWriter() contains several parameters that we should under-
stand. The first is just the filename for the new file. The second is the video codec with
which the video stream will be compressed. There are countless such codecs in cir-
culation, but whichever codec you choose must be available on your machine (codecs
are installed separately from OpenCV). In our case we choose the relatively popular
M]JPG codec; this is indicated to OpenCV by using the macro CV_FOURCC(), which takes
four characters as arguments. These characters constitute the “four-character code” of
the codec, and every codec has such a code. The four-character code for motion jpeg is
MJPG, so we specify that as CV_FOURCC(‘M’,‘3’,“P’,‘G’).

The next two arguments are the replay frame rate, and the size of the images we will be
using. In our case, we set these to the values we got from the original (color) video.
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Onward

Before moving on to the next chapter, we should take a moment to take stock of where
we are and look ahead to what is coming. We have seen that the OpenCV API provides
us with a variety of easy-to-use tools for loading still images from files, reading video
from disk, or capturing video from cameras. We have also seen that the library con-
tains primitive functions for manipulating these images. What we have not yet seen are
the powerful elements of the library, which allow for more sophisticated manipulation
of the entire set of abstract data types that are important to practical vision problem
solving.

In the next few chapters we will delve more deeply into the basics and come to under-
stand in greater detail both the interface-related functions and the image data types. We
will investigate the primitive image manipulation operators and, later, some much more
advanced ones. Thereafter, we will be ready to explore the many specialized services
that the API provides for tasks as diverse as camera calibration, tracking, and recogni-
tion. Ready? Let’s go!

Exercises

Download and install OpenCV if you have not already done so. Systematically go
through the directory structure. Note in particular the docs directory; there you can
load index.htm, which further links to the main documentation of the library. Further
explore the main areas of the library. Cvcore contains the basic data structures and algo-
rithms, c¢v contains the image processing and vision algorithms, ml includes algorithms
for machine learning and clustering, and otherlibs/highgui contains the I/O functions.
Check out the _make directory (containing the OpenCV build files) and also the sam-
ples directory, where example code is stored.

1. Go to the .../opencv/_make directory. On Windows, open the solution file opency
.sln; on Linux, open the appropriate makefile. Build the library in both the debug
and the release versions. This may take some time, but you will need the resulting
library and dll files.

2. Go to the .../opencv/samples/c/ directory. Create a project or make file and
then import and build lkdemo.c (this is an example motion tracking program).
Attach a camera to your system and run the code. With the display window se-
lected, type “r” to initialize tracking. You can add points by clicking on video po-
sitions with the mouse. You can also switch to watching only the points (and not
the image) by typing “n”. Typing “n” again will toggle between “night” and “day”
views.

3. Use the capture and store code in Example 2-10, together with the doPyrDown() code

of Example 2-5 to create a program that reads from a camera and stores downsam-
pled color images to disk.
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4. Modify the code in exercise 3 and combine it with the window display code in

Example 2-1 to display the frames as they are processed.

5. Modify the program of exercise 4 with a slider control from Example 2-3 so that the
user can dynamically vary the pyramid downsampling reduction level by factors
of between 2 and 8. You may skip writing this to disk, but you should display the
results.
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CHAPTER 3
Getting to Know OpenCV

OpenCV Primitive Data Types

OpenCV has several primitive data types. These data types are not primitive from the
point of view of C, but they are all simple structures, and we will regard them as atomic.
You can examine details of the structures described in what follows (as well as other
structures) in the cxtypes.h header file, which is in the .../OpenCV/cxcore/include direc-
tory of the OpenCV install.

The simplest of these types is CvPoint. CvPoint is a simple structure with two integer
members, x and y. CvPoint has two siblings: CvPoint2D32f and CvPoint3D32f. The former
has the same two members x and y, which are both floating-point numbers. The latter
also contains a third element, z.

CvSize is more like a cousin to CvPoint. Its members are width and height, which are
both integers. If you want floating-point numbers, use CvSize’s cousin CvSize2D32f.

CvRect is another child of CvPoint and CvSize; it contains four members: x, y, width, and
height. (In case you were worried, this child was adopted.)

Last but not least is CvScalar, which is a set of four double-precision numbers. When
memory is not an issue, CvScalar is often used to represent one, two, or three real num-
bers (in these cases, the unneeded components are simply ignored). CvScalar has a
single member val, which is a pointer to an array containing the four double-precision
floating-point numbers.

All of these data types have constructor methods with names like cvSize() (generally*
the constructor has the same name as the structure type but with the first character
not capitalized). Remember that this is C and not C++, so these “constructors” are just
inline functions that take a list of arguments and return the desired structure with the
values set appropriately.

* We say “generally” here because there are a few oddballs. In particular, we have cvScalarAll(double) and
cvRealScalar(double); the former returns a CvScalar with all four values set to the argument, while the
latter returns a CvScalar with the first value set and the other values 0.
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The inline constructors for the data types listed in Table 3-1—cvPointXXX(), cvSize(),
cvRect(), and cvScalar()—are extremely useful because they make your code not only
easier to write but also easier to read. Suppose you wanted to draw a white rectangle
between (5, 10) and (20, 30); you could simply call:

cvRectangle(
myImg,
cvPoint(5,10),
cvPoint(20,30),
cvScalar(255,255,255)
);

Table 3-1. Structures for points, size, rectangles, and scalar tuples

Structure Contains Represents
CvPoint int x, y Pointinimage
CvPoint2D32f float x, y Points in 92
CvPoint3D32f float x, vy, z Points in %3
CvSize int width, height Size ofimage
CvRect int x, y, width, height Portion of image
CvScalar double val[4] RGBA value

cvScalar() is a special case: it has three constructors. The first, called cvScalar(), takes
one, two, three, or four arguments and assigns those arguments to the correspond-
ing elements of val[]. The second constructor is cvRealScalar(); it takes one argu-
ment, which it assigns to val[0] while setting the other entries to 0. The final variant is
cvScalarAll(), which takes a single argument but sets all four elements of val[] to that
same argument.

Matrix and Image Types

Figure 3-1 shows the class or structure hierarchy of the three image types. When using
OpenCV, you will repeatedly encounter the IplImage data type. You have already seen
it many times in the previous chapter. IplImage is the basic structure used to encode
what we generally call “images”. These images may be grayscale, color, four-channel
(RGB+alpha), and each channel may contain any of several types of integer or floating-
point numbers. Hence, this type is more general than the ubiquitous three-channel 8-bit
RGB image that immediately comes to mind.*

OpenCV provides a vast arsenal of useful operators that act on these images, including
tools to resize images, extract individual channels, find the largest or smallest value of
a particular channel, add two images, threshold an image, and so on. In this chapter we
will examine these sorts of operators carefully.

* If you are especially picky, you can say that OpenCV is a design, implemented in C, that is not only object-
oriented but also template-oriented.
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CvArr

% CvMat
% Iplimage

Figure 3-1. Even though OpenCV is implemented in C, the structures used in OpenCV have an
object-oriented design; in effect, Ipllmage is derived from CvMat, which is derived from CvArr

Before we can discuss images in detail, we need to look at another data type: CvMat,
the OpenCV matrix structure. Though OpenCV is implemented entirely in C, the rela-
tionship between CvMat and IplImage is akin to inheritance in C++. For all intents and
purposes, an IplImage can be thought of as being derived from CvMat. Therefore, it is
best to understand the (would-be) base class before attempting to understand the added
complexities of the derived class. A third class, called CvArr, can be thought of as an
abstract base class from which CvMat is itself derived. You will often see CvArr (or, more
accurately, CvArr*) in function prototypes. When it appears, it is acceptable to pass
CvMat* or IplImage* to the routine.

CvMat Matrix Structure

There are two things you need to know before we dive into the matrix business. First,
there is no “vector” construct in OpenCV. Whenever we want a vector, we just use a
matrix with one column (or one row, if we want a transpose or conjugate vector).
Second, the concept of a matrix in OpenCV is somewhat more abstract than the con-
cept you learned in your linear algebra class. In particular, the elements of a matrix
need not themselves be simple numbers. For example, the routine that creates a new
two-dimensional matrix has the following prototype:
cvMat* cvCreateMat ( int rows, int cols, int type );

Here type can be any of a long list of predefined types of the form: CV <bit depth>(S|U|F)
(number_of channels>. Thus, the matrix could consist of 32-bit floats (CV_32FC1), of un-
signed integer 8-bit triplets (CV_8UC3), or of countless other elements. An element of a
CvMat is not necessarily a single number. Being able to represent multiple values for a
single entry in the matrix allows us to do things like represent multiple color channels
in an RGB image. For a simple image containing red, green and blue channels, most im-
age operators will be applied to each channel separately (unless otherwise noted).

Internally, the structure of CvMat is relatively simple, as shown in Example 3-1 (you can
see this for yourself by opening up .../opencv/cxcore/include/cxtypes.h). Matrices have
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a width, a height, a type, a step (the length of a row in bytes, not ints or floats), and a
pointer to a data array (and some more stuff that we won't talk about just yet). You can
access these members directly by de-referencing a pointer to CvMat or, for some more
popular elements, by using supplied accessor functions. For example, to obtain the size
of a matrix, you can get the information you want either by calling cvGetSize(CvMat*),
which returns a CvSize structure, or by accessing the height and width independently
with such constructs as matrix->height and matrix->width.

Example 3-1. CvMat structure: the matrix “header”

typedef struct CvMat {

int type;

int step;

int* refcount; // for internal use only

union {
uchar* ptr;
short* s;
int* i;
float* f1;
double* db;

} data;

union {
int rows;
int height;

b

union {
int cols;
int width;

I3

} CvMat;

This information is generally referred to as the matrix header. Many routines distin-
guish between the header and the data, the latter being the memory that the data ele-
ment points to.

Matrices can be created in one of several ways. The most common way is to use
cvCreateMat(), which is essentially shorthand for the combination of the more atomic
functions cvCreateMatHeader() and cvCreateData(). cvCreateMatHeader() creates the
CvMat structure without allocating memory for the data, while cvCreateData() handles
the data allocation. Sometimes only cvCreateMatHeader() is required, either because you
have already allocated the data for some other reason or because you are not yet ready
to allocate it. The third method is to use the cvCloneMat(CvMat*), which creates a new
matrix from an existing one.* When the matrix is no longer needed, it can be released
by calling cvReleaseMat(CvMat**).

The list in Example 3-2 summarizes the functions we have just described as well as some
others that are closely related.

* cvCloneMat() and other OpenCV functions containing the word “clone” not only create a new header that
is identical to the input header, they also allocate a separate data area and copy the data from the source to
the new object.
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Example 3-2. Matrix creation and release

// Create a new rows by cols matrix of type ‘type’.

/

CvMat* cvCreateMat( int rows, int cols, int type );

// Create only matrix header without allocating data

/

CvMat* cvCreateMatHeader( int rows, int cols, int type );

// Initialize header on existing CvMat structure
//
CvMat* cvInitMatHeader(

CvMat* mat,

int  rows,

int  cols,

int  type,

void* data = NULL,

int  step = CV_AUTOSTEP

)

// Like cvInitMatHeader() but allocates CvMat as well.

//
CvMat cvMat(

int  rows,
int  cols,
int  type,

void* data = NULL
)

// Allocate a new matrix just like the matrix ‘mat’.

//
CvMat* cvCloneMat( const cvMat* mat );

// Free the matrix ‘mat’, both header and data.

/

void cvReleaseMat( CvMat** mat );

Analogously to many OpenCV structures, there is a constructor called cvMat() that cre-
ates a CvMat structure. This routine does not actually allocate memory; it only creates the
header (this is similar to cvInitMatHeader()). These methods are a good way to take some
data you already have lying around, package it by pointing the matrix header to it as in

Example 3-3, and run it through routines that process OpenCV matrices.

Example 3-3. Creating an OpenCV matrix with fixed data

// Create an OpenCV Matrix containing some fixed data.

//
float vals[] = { 0.866025, -0.500000, 0.500000, 0.866025 };

CvMat rotmat;
cvInitMatHeader(

&rotmat,
2,

(vMat Matrix Structure
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Example 3-3. Creating an OpenCV matrix with fixed data (continued)

2,
CV_32FC1,
vals

)

Once we have a matrix, there are many things we can do with it. The simplest operations
are querying aspects of the array definition and data access. To query the matrix, we have
cvGetElemType( const CvArr* arr ), cvGetDims( const CvArr* arr, int* sizes=NULL ),
and cvGetDimSize( const CvArr* arr, int index ). The first returns an integer constant
representing the type of elements stored in the array (this will be equal to something
like CV_8UC1, CV_64FC4, etc). The second takes the array and an optional pointer to an
integer; it returns the number of dimensions (two for the cases we are considering, but
later on we will encounter N-dimensional matrixlike objects). If the integer pointer is
not null then it will store the height and width (or N dimensions) of the supplied array.
The last function takes an integer indicating the dimension of interest and simply re-
turns the extent of the matrix in that dimension.*

Accessing Data in Your Matrix

There are three ways to access the data in your matrix: the easy way, the hard way, and
the right way.

The easy way

The easiest way to getata member element of an array is with the CV_MAT ELEM() macro. This
macro (see Example 3-4) takes the matrix, the type of element to be retrieved, and the
row and column numbers and then returns the element.

Example 3-4. Accessing a matrix with the CV_MAT_ELEM() macro

CvMat* mat = cvCreateMat( 5, 5, CV_32FC1 );
float element 3 2 = CV_MAT ELEM( *mat, float, 3, 2 );

“Under the hood” this macro is just calling the macro CV_MAT ELEM PTR(). CV_MAT ELEM_
PTR() (see Example 3-5) takes as arguments the matrix and the row and column of the
desired element and returns (not surprisingly) a pointer to the indicated element. One
important difference between CV_MAT ELEM() and CV_MAT ELEM_PTR() is that CV_MAT ELEM()
actually casts the pointer to the indicated type before de-referencing it. If you would
like to set a value rather than just read it, you can call CV_MAT ELEM_PTR() directly; in this
case, however, you must cast the returned pointer to the appropriate type yourself.

Example 3-5. Setting a single value in a matrix using the CV_MAT_ELEM_PTR() macro

CvMat* mat = cvCreateMat( 5, 5, CV_32FC1 );
float element 3 2 = 7.7;
*( (float*)CV_MAT ELEM PTR( *mat, 3, 2 ) ) = element 3 2;

* For the regular two-dimensional matrices discussed here, dimension zero (0) is always the “width” and
dimension one (1) is always the height.
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Unfortunately, these macros recompute the pointer needed on every call. This means
looking up the pointer to the base element of the data area of the matrix, computing an
offset to get the address of the information you are interested in, and then adding that
offset to the computed base. Thus, although these macros are easy to use, they may not
be the best way to access a matrix. This is particularly true when you are planning to ac-
cess all of the elements in a matrix sequentially. We will come momentarily to the best
way to accomplish this important task.

The hard way

The two macros discussed in “The easy way” are suitable only for accessing one- and
two-dimensional arrays (recall that one-dimensional arrays, or “vectors”, are really just
n-by-1 matrices). OpenCV provides mechanisms for dealing with multidimensional ar-
rays. In fact OpenCV allows for a general N-dimensional matrix that can have as many
dimensions as you like.

For accessing data in a general matrix, we use the family of functions cvPtr*D and
cvGet*D.. listed in Examples 3-6 and 3-7. The cvPtr*D family contains cvPtriD(),
cvPtraD(), cvPtr3D(), and cvPtrND() . ... Each of the first three takes a CvArr* matrix
pointer argument followed by the appropriate number of integers for the indices, and
an optional argument indicating the type of the output parameter. The routines return
a pointer to the element of interest. With cvPtrND(), the second argument is a pointer to
an array of integers containing the appropriate number of indices. We will return to this
function later. (In the prototypes that follow, you will also notice some optional argu-
ments; we will address those when we need them.)

Example 3-6. Pointer access to matrix structures

uchar* cvPtraD(

const CvArr* arr,

int idxo,

int* type = NULL
);

uchar* cvPtr2D(
const CvArr* arr,

int idxo,
int idx1,
int* type = NULL

)

uchar* cvPtr3D(
const CvArr* arr,

int idxo,
int idx1,
int idx2,
int* type = NULL

)

uchar* cvPtrND(
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Example 3-6. Pointer access to matrix structures (continued)

const CvArr* arr,

int* idx,
int* type = NULL,
int create node =1

unsigned* precalc_hashval = NULL

)

For merely reading the data, there is another family of functions cvGet*D, listed in Ex-
ample 3-7, that are analogous to those of Example 3-6 but return the actual value of the
matrix element.

Example 3-7. CvMat and IplImage element functions

double cvGetRealiD( const CvArr* arr, int idxo );

double cvGetReal2D( const CvArr* arr, int idxo, int idx1 );

double cvGetReal3D( const CvArr* arr, int idxo, int idx1, int idx2 );
double cvGetRealND( const CvArr* arr, int* idx );

CvScalar cvGet1D
CvScalar cvGet2D
CvScalar cvGet3D
CvScalar cvGetND

const CvArr* arr, int idxo );

const CvArr* arr, int idxo, int idx1 );

const CvArr* arr, int idxo, int idxi, int idx2 );
const CvArr* arr, int* idx );

The return type of cvGet*D is double for four of the routines and CvScalar for the other
four. This means that there can be some significant waste when using these functions.
They should be used only where convenient and eflicient; otherwise, it is better just to
use cvPtr*D.

One reason it is better to use cvPtr*D() is that you can use these pointer functions to
gain access to a particular point in the matrix and then use pointer arithmetic to move
around in the matrix from there. It is important to remember that the channels are con-
tiguous in a multichannel matrix. For example, in a three-channel two-dimensional ma-
trix representing red, green, blue (RGB) bytes, the matrix data is stored: rgbrgbrgb . . ..
Therefore, to move a pointer of the appropriate type to the next channel, we add 1. If
we wanted to go to the next “pixel” or set of elements, we’d add and offset equal to the
number of channels (in this case 3).

The other trick to know is that the step element in the matrix array (see Examples 3-1 and
3-3) is the length in bytes of a row in the matrix. In that structure, cols or width alone
is not enough to move between matrix rows because, for machine efficiency, matrix or
image allocation is done to the nearest four-byte boundary. Thus a matrix of width three
bytes would be allocated four bytes with the last one ignored. For this reason, if we get
a byte pointer to a data element then we add step to the pointer in order to step it to the
next row directly below our point. If we have a matrix of integers or floating-point num-
bers and corresponding int or float pointers to a data element, we would step to the
next row by adding step/4; for doubles, we’d add step/8 (this is just to take into account
that C will automatically multiply the offsets we add by the data type’s byte size).
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Somewhat analogous to cvGet*D is cvSet*D in Example 3-8, which sets a matrix or image
element with a single call, and the functions cvSetReal*D() and cvSet*D(), which can be
used to set the values of elements of a matrix or image.

Example 3-8. Set element functions for CvMat or IplImage.

void cvSetRealiD( CvArr* arr, int idxo, double value );
void cvSetReal2D( CvArr* arr, int idxo, int idx1, double value );
void cvSetReal3D(
CvArr* arr,
int idxo,
int idxi,
int idx2,
double value
).

)
void cvSetRealND( CvArr* arr, int* idx, double value );

void cvSetiD( CvArr* arr, int idxo, CvScalar value );
void cvSet2D( CvArr* arr, int idxo0, int idx1, CvScalar value );
void cvSet3D(

CvArT* arr,

int idxo,

int idxa,

int idx2,

CvScalar value

)

5
void cvSetND( CvArr* arr, int* idx, CvScalar value );

As an added convenience, we also have cvmSet() and cvmGet(), which are used when
dealing with single-channel floating-point matrices. They are very simple:

double cvmGet( const CvMat* mat, int row, int col )
void cvmSet( CvMat* mat, int row, int col, double value )

So the call to the convenience function cvmSet(),
cvmSet( mat, 2, 2, 0.5000 );

is the same as the call to the equivalent cvSetReal2D function,
cvSetReal2D( mat, 2, 2, 0.5000 );

The right way

With all of those accessor functions, you might think that there’s nothing more to say.
In fact, you will rarely use any of the set and get functions. Most of the time, vision is
a processor-intensive activity, and you will want to do things in the most efficient way
possible. Needless to say, going through these interface functions is not efficient. Instead,
you should do your own pointer arithmetic and simply de-reference your way into the
matrix. Managing the pointers yourself is particularly important when you want to do
something to every element in an array (assuming there is no OpenCV routine that can
perform this task for you).

For direct access to the innards of a matrix, all you really need to know is that the data

«_»

is stored sequentially in raster scan order, where columns (“x”) are the fastest-running
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variable. Channels are interleaved, which means that, in the case of a multichannel ma-
trix, they are a still faster-running ordinal. Example 3-9 shows an example of how this
can be done.

Example 3-9. Summing all of the elements in a three-channel matrix
float sum( const CvMat* mat ) {

float s = 0.0f;
for(int row=0; row<mat->rows; row++ ) {
const float* ptr = (const float*)(mat->data.ptr + row * mat->step);
for( col=0; col<mat->cols; col++ ) {
s += *ptr++;
}
}

return( s );

}

When computing the pointer into the matrix, remember that the matrix element data
is a union. Therefore, when de-referencing this pointer, you must indicate the correct
element of the union in order to obtain the correct pointer type. Then, to offset that
pointer, you must use the step element of the matrix. As noted previously, the step ele-
ment is in bytes. To be safe, it is best to do your pointer arithmetic in bytes and then
cast to the appropriate type, in this case float. Although the CvMat structure has the
concept of height and width for compatibility with the older IplImage structure, we use
the more up-to-date rows and cols instead. Finally, note that we recompute ptr for every
row rather than simply starting at the beginning and then incrementing that pointer
every read. This might seem excessive, but because the CvMat data pointer could just
point to an ROI within a larger array, there is no guarantee that the data will be contigu-
OUS across rows.

Arrays of Points

One issue that will come up often—and that is important to understand—is the differ-
ence between a multidimensional array (or matrix) of multidimensional objects and an
array of one higher dimension that contains only one-dimensional objects. Suppose, for
example, that you have n points in three dimensions which you want to pass to some
OpenCV function that takes an argument of type CvMat* (or, more likely, cvArr*). There
are four obvious ways you could do this, and it is absolutely critical to remember that
they are not necessarily equivalent. One method would be to use a two-dimensional ar-
ray of type CV32FC1 with n rows and three columns (n-by-3). Similarly, you could use a
two-dimensional array with three rows and #n columns (3-by-n). You could also use an
array with n rows and one column (n-by-1) of type CV32FC3 or an array with one row and
n columns (3-by-1). Some of these cases can be freely converted from one to the other
(meaning you can just pass one where the other is expected) but others cannot. To un-
derstand why, consider the memory layout shown in Figure 3-2.

Asyou can see in the figure, the points are mapped into memory in the same way for three
of the four cases just described above but differently for the last. The situation is even
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n-by-1 (32FC3) 1-by-n (32FC3)
. Xo| Yo| Zo | X1| Y1 | %4 Xo| Yo| Zo | X1| V1| %4
points X Y21 22| X3 ¥3| 23 X2l Y2| 22| X3| ¥3| Z3
(Xo Yo Z0) Xa| Ya| Za | X5| ¥Ys5| Z5 Xa| Ya| 24| X5| Y5| Z5
(X1 ¥129) Xe| Yo | Z6 | X7| ¥Y7| Z7 Xe| Yo | Z6 | X7| Y7| Z7
(X5 Y5 25) Xg| Ys| Zg | Xo| Yo| Zg Xg| Y8 | Zg | Xo| Yo| Z9
(X3Y323)
(X4 Y424)
(X5 Y5 Z5) n-by-3 (32FC1) 3-by-n (32FC1)
(X6 Y6 Z6) Xo| Yo| Zo | X1| Y1| % Xo| X1 | X3 | X3| X4 Xs
(x7Y727) X2 ¥2| 20| X3]| Y3| 23 Xe| X7| X8 | X9| Yo| Y1
(Xg Y Zg) Xa| Ya| Za | X5| Y5| Zs Yo| Ya| Ya| ¥Y5| Ye| ¥7
(Xg Vg Zo) Xe| Yo | Zo | X7| ¥7| Z7 Ys| Yo| Zo| Z1| 25| Z3
Xg| Ys| Z8 | Xo| Yo| Zo Z4| Zs| 26| Z7| Zg| Lo

Figure 3-2. A set of ten points, each represented by three floating-point numbers, placed in four ar-
rays that each use a slightly different structure; in three cases the resulting memory layout is identi-
cal, but one case is different

more complicated for the case of an N-dimensional array of c-dimensional points. The
key thing to remember is that the location of any given point is given by the formula:

O0=(row):N_ N +(col)-N

cols channels

+(channel)

channels

where N, and N, are the number of columns and channels, respectively.* From
this formula one can see that, in general, an N-dimensional array of c-dimensional ob-
jects is not the same as an (N + ¢)-dimensional array of one-dimensional objects. In the
special case of N =1 (i.e., vectors represented either as n-by-1 or 1-by-n arrays), there is
a special degeneracy (specifically, the equivalences shown in Figure 3-2) that can some-
times be taken advantage of for performance.

The last detail concerns the OpenCV data types such as CvPoint2D and CvPoint2D32f.
These data types are defined as C structures and therefore have a strictly defined mem-
ory layout. In particular, the integers or floating-point numbers that these structures
comprise are “channel” sequential. As a result, a one-dimensional C-style array of these
objects has the same memory layout as an n-by-1 or a 1-by-n array of type CV32FC2. Simi-
lar reasoning applies for arrays of structures of the type CvPoint3D32f.

* In this context we use the term “channel” to refer to the fastest-running index. This index is the one associ-
ated with the C3 part of CV32FC3. Shortly, when we talk about images, the “channel” there will be exactly
equivalent to our use of “channel” here.
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Iplimage Data Structure

With all of that in hand, it is now easy to discuss the IplImage data structure. In es-
sence this object is a CvMat but with some extra goodies buried in it to make the matrix
interpretable as an image. This structure was originally defined as part of Intel’s Image
Processing Library (IPL).* The exact definition of the IplImage structure is shown in
Example 3-10.

Example 3-10. Ipllmage header structure
typedef struct IplImage {

int nSize;

int 1D0;

int nChannels;
int alphaChannel;
int depth;

char colorModel[4];
char channelSeq[4];
int dataOrder;
int origin;

int align;

int width;

int height;
struct IplROI* roi;

struct IplImage* maskROI;

void* imageld;
struct IplTileInfo* tilelnfo;

int imageSize;
char* imageData;
int widthStep;
int BorderMode[4];
int BorderConst[4];
char* imageDataOrigin;

} IplImage;

As crazy as it sounds, we want to discuss the function of several of these variables. Some
are trivial, but many are very important to understanding how OpenCV interprets and
works with images.

After the ubiquitous width and height, depth and nChannels are the next most crucial.
The depth variable takes one of a set of values defined in ipl.h, which are (unfortunately)
not exactly the values we encountered when looking at matrices. This is because for im-
ages we tend to deal with the depth and the number of channels separately (whereas in
the matrix routines we tended to refer to them simultaneously). The possible depths are
listed in Table 3-2.

* IPL was the predecessor to the more modern Intel Performance Primitives (IPP), discussed in Chapter 1.
Many of the OpenCV functions are actually relatively thin wrappers around the corresponding IPL or IPP
routines. This is why it is so easy for OpenCV to swap in the high-performance IPP library routines when
available.
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Table 3-2. OpenCV image types

Macro Image pixel type

IPL_DEPTH_8U Unsigned 8-bit integer (8u)
IPL_DEPTH_8S Signed 8-bit integer (8s)

IPL_DEPTH_16S Signed 16-bit integer (16s)
IPL_DEPTH_32S Signed 32-bit integer (32s)

IPL DEPTH_ 32F 32-bit floating-point single-precision (32f)
IPL_DEPTH_64F 64-bit floating-point double-precision (64f)

The possible values for nChannels are 1, 2, 3, or 4.

The next two important members are origin and dataOrder. The origin variable can
take one of two values: IPL_ORIGIN TL or IPL ORIGIN BL, corresponding to the origin of
coordinates being located in either the upper-left or lower-left corners of the image, re-
spectively. The lack of a standard origin (upper versus lower) is an important source of
error in computer vision routines. In particular, depending on where an image came
from, the operating system, codec, storage format, and so forth can all affect the loca-
tion of the origin of the coordinates of a particular image. For example, you may think
you are sampling pixels from a face in the top quadrant of an image when you are really
sampling from a shirt in the bottom quadrant. It is best to check the system the first
time through by drawing where you think you are operating on an image patch.

The dataOrder may be either IPL_DATA ORDER_PIXEL or IPL_DATA ORDER_PLANE.* This value
indicates whether the data should be packed with multiple channels one after the other
for each pixel (interleaved, the usual case), or rather all of the channels clustered into
image planes with the planes placed one after another.

The parameter widthStep contains the number of bytes between points in the same col-
umn and successive rows (similar to the “step” parameter of CvMat discussed earlier).
The variable width is not sufficient to calculate the distance because each row may be
aligned with a certain number of bytes to achieve faster processing of the image; hence
there may be some gaps between the end of ith row and the start of (i + 1) row. The pa-
rameter imageData contains a pointer to the first row of image data. If there are several
separate planes in the image (as when dataOrder = IPL_DATA ORDER PLANE) then they are
placed consecutively as separate images with height*nChannels rows in total, but nor-
mally they are interleaved so that the number of rows is equal to height and with each
row containing the interleaved channels in order.

Finally there is the practical and important region of interest (ROI), which is actually an
instance of another IPL/IPP structure, IpIROI. An IpIROI contains an xOffset, a yOffset,

* We say that dataOrder may be either IPL_DATA ORDER PIXEL or IPL_DATA ORDER PLANE, but in fact only
IPL_DATA ORDER_PIXEL is supported by OpenCV. Both values are generally supported by IPL/IPP, but
OpenCV always uses interleaved images.
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aheight,awidth, and a coi, where COI stands for channel of interest* The idea behind the
ROLl is that, once it is set, functions that would normally operate on the entire image will
instead act only on the subset of the image indicated by the ROI. All OpenCV functions
will use ROTI if set. If the COI is set to a nonzero value then some operators will act only on
the indicated channel.” Unfortunately, many OpenCV functions ignore this parameter.

Accessing Image Data

When working with image data we usually need to do so quickly and efficiently. This
suggests that we should not subject ourselves to the overhead of calling accessor func-
tions like cvSet*D or their equivalent. Indeed, we would like to access the data inside of
the image in the most direct way possible. With our knowledge of the internals of the
IplImage structure, we can now understand how best to do this.

Even though there are often well-optimized routines in OpenCV that accomplish many
of the tasks we need to perform on images, there will always be tasks for which there is no
prepackaged routine in the library. Consider the case of a three-channel HSV [Smith78]
image* in which we want to set the saturation and value to 255 (their maximal values
for an 8-bit image) while leaving the hue unmodified. We can do this best by handling
the pointers into the image ourselves, much as we did with matrices in Example 3-9.
However, there are a few minor differences that stem from the difference between the
IplImage and CvMat structures. Example 3-11 shows the fastest way.

Example 3-11. Maxing out (saturating) only the “S” and “V” parts of an HSV image

void saturate sv( IplImage* img ) {

for( int y=0; y<img->height; y++ ) {
uchar* ptr = (uchar*) (
img->imageData + y * img->widthStep
for( int x=0; x<img->width; x++ ) {
ptr[3*x+1] = 255;
ptr[3*x+2] = 255;
}
}
}

We simply compute the pointer ptr directly as the head of the relevant row y. From
there, we de-reference the saturation and value of the x column. Because this is a three-
channel image, the location of channel c in column x is 3*x+c.

* Unlike other parts of the ROI, the COI is not respected by all OpenCV functions. More on this later, but for
now you should keep in mind that COI is not as universally applied as the rest of the ROI.

+ For the COL the terminology is to indicate the channel as 1, 2, 3, or 4 and to reserve 0 for deactivating the
COI all together (something like a “don’t care”).

1 In OpenCV, an HSV image does not differ from an RGB image except in terms of how the channels are
interpreted. As a result, constructing an HSV image from an RGB image actually occurs entirely within the
“data” area; there is no representation in the header of what meaning is “intended” for the data channels.
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One important difference between the IplImage case and the CvMat case is the behav-
ior of imageData, compared to the element data of CvMat. The data element of CvMat is a
union, so you must indicate which pointer type you want to use. The imageData pointer
is a byte pointer (uchar*). We already know that the data pointed to is not necessarily of
type uchar, which means that—when doing pointer arithmetic on images—you can sim-
ply add widthStep (also measured in bytes) without worrying about the actual data type
until after the addition, when you cast the resultant pointer to the data type you need.
To recap: when working with matrices, you must scale down the offset because the data
pointer may be of nonbyte type; when working with images, you can use the offset “as
is” because the data pointer is always of a byte type, so you can just cast the whole thing
when you are ready to use it.

More on ROl and widthStep

ROI and widthStep have great practical importance, since in many situations they speed
up computer vision operations by allowing the code to process only a small subregion of
the image. Support for ROI and widthStep is universal in OpenCV:* every function allows
operation to be limited to a subregion. To turn ROI on or off, use the cvSetImageROI()
and cvResetImageROI() functions. Given a rectangular subregion of interest in the form
of a CvRect, you may pass an image pointer and the rectangle to cvSetImageROI() to “turn
on” ROL “turn off” ROI by passing the image pointer to cvResetImageROI().

void cvSetImageROI( IplImage* image, CvRect rect );

void cvResetImageROI( IplImage* image );
To see how ROI is used, let’s suppose we want to load an image and modify some region
of that image. The code in Example 3-12 reads an image and then sets the x, y, width,
and height of the intended ROI and finally an integer value add to increment the ROI
region with. The program then sets the ROI using the convenience of the inline cvRect()
constructor. It’s important to release the ROI with cvResetImageROI(), for otherwise the
display will observe the ROI and dutifully display only the ROI region.

Example 3-12. Using ImageROI to increment all of the pixels in a region

// roi_add <image> <x> <y> <width> <height> <add>
#include <cv.h>
#include <highgui.h>

int main(int argc, char** argv)
{
IplImage* src;
if( argc == 7 8&% ((src=cvLoadImage(argv[1],1)) != 0 ))

int x = atoi(argv([2]);
int y = atoi(argv(3]);
int width = atoi(argv[4]);
int height = atoi(argv[s]);

* Well, in theory at least. Any nonadherence to widthStep or ROl is considered a bug and may be posted
as such to SourceForge, where it will go on a “to fix” list. This is in contrast with color channel of interest,
“COTI”, which is supported only where explicitly stated.
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Example 3-12. Using ImageROI to increment all of the pixels in a region (continued)
int add = atoi(argv[6]);
cvSetImageROI(src, cvRect(x,y,width,height));
cvAddS(src, cvScalar(add),src);
cvResetImageROI(src);
cvNamedWindow( “Roi_Add”, 1 );
cvShowImage( “Roi_Add”, src );
cviaitkey();
}

return 0;

}

Figure 3-3 shows the result of adding 150 to the blue channel of the image of a cat with
an ROI centered over its face, using the code from Example 3-12.

Figure 3-3. Result of adding 150 to the face ROI of a cat

We can achieve the same effect by clever use of widthStep. To do this, we create another im-
age header and set its width and height equal to the interest rect width and height. We
also need to set the image origin (upper left or lower left) to be the same as the interest
img. Next we set the widthStep of this subimage to be the widthStep of the larger interest
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img; this way, stepping by rows in the subimage steps you to the appropriate place at the
start of the next line of the subregion within the larger image. We finally set the subimage
imageData pointer the start of the interest subregion, as shown in Example 3-13.

Example 3-13. Using alternate widthStep method to increment all of the pixels of interest_img by 1

// Assuming IplImage *interest img; and
//  CvRect interest rect;
// Use widthStep to get a region of interest

/

// (Alternate method)

1

IplImage *sub img = cvCreateImageHeader(
cvSize(

interest rect.width,
interest rect.height

)
interest_img->depth,
interest img->nChannels

);
sub img->origin = interest img->origin;
sub_img->widthStep = interest img->widthStep;

sub_img->imageData = interest img->imageData +
interest rect.y * interest img->widthStep +
interest rect.x * interest img->nChannels;

cvAddS( sub_img, cvScalar(1), sub img );
cvReleaseImageHeader (&sub_img);

So, why would you want to use the widthStep trick when setting and resetting ROI seem
to be more convenient? The reason is that there are times when you want to set and per-
haps keep multiple subregions of an image active during processing, but ROI can only
be done serially and must be set and reset constantly.

Finally, a word should be said here about masks. The cvAddS() function used in the
code examples allows the use of a fourth argument that defaults to NULL: const CvArr*
mask=NULL. This is an 8-bit single-channel array that allows you to restrict processing to
an arbitrarily shaped mask region indicated by nonzero pixels in the mask. If ROI is set
along with a mask, processing will be restricted to the intersection of the ROI and the
mask. Masks can be used only in functions that specify their use.

Matrix and Image Operators

Table 3-3 lists a variety of routines for matrix manipulation, most of which work equally
well for images. They do all of the “usual” things, such as diagonalizing or transpos-
ing a matrix, as well as some more complicated operations, such as computing image
statistics.
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Table 3-3. Basic matrix and image operators

Function Description

cvAbs Absolute value of all elements in an array

cvAbsDiff Absolute value of differences between two arrays

cvAbsDiffS Absolute value of difference between an array and a scalar
cvAdd Elementwise addition of two arrays

cvAddS Elementwise addition of an array and a scalar
cvAddiWeighted Elementwise weighted addition of two arrays (alpha blending)
cvAvg Average value of all elements in an array

cvAvgSdv Absolute value and standard deviation of all elements in an array
cvCalcCovarMatrix Compute covariance of a set of n-dimensional vectors

cvCmp Apply selected comparison operator to all elements in two arrays
cvCmpS Apply selected comparison operator to an array relative to a scalar
cvConvertScale Convert array type with optional rescaling of the value
cvConvertScaleAbs Convert array type after absolute value with optional rescaling
cvCopy Copy elements of one array to another

cvCountNonZero Count nonzero elements in an array

cvCrossProduct Compute cross product of two three-dimensional vectors
cvCvtColor Convert channels of an array from one color space to another
cvDet Compute determinant of a square matrix

cvDiv Elementwise division of one array by another

cvDotProduct Compute dot product of two vectors

cvEigenvV Compute eigenvalues and eigenvectors of a square matrix
cvFlip Flip an array about a selected axis

CVGEMM Generalized matrix multiplication

cvGetCol Copy elements from column slice of an array

cvGetCols Copy elements from multiple adjacent columns of an array
cvGetDiag Copy elements from an array diagonal

cvGetDims Return the number of dimensions of an array

cvGetDimSize Return the sizes of all dimensions of an array

cvGetRow Copy elements from row slice of an array

cvGetRows Copy elements from multiple adjacent rows of an array
cvGetSize Get size of a two-dimensional array and return as CvSize
cvGetSubRect Copy elements from subregion of an array

cvInRange Test if elements of an array are within values of two other arrays
cvInRangeS Test if elements of an array are in range between two scalars
cvInvert Invert a square matrix
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Table 3-3. Basic matrix and image operators (continued)

Function

cvMahalonobis
cvMax
cvMaxS
cvMerge
cvMin
cvMinS
cvMinMaxLoc
cvMul

cvNot
cvNorm
cvNormalize
cvOr

cv0rsS
cvReduce
cvRepeat
cvSet
cvSetZero
cvSetIdentity
cvSolve
cvSplit
cvSub
cvSubS
cvSubRS
cvsum
cvSVD
cvSVBkSb
cvlrace
cvlranspose
cvXor
cvXorS

cvZero

Description

Compute Mahalonobis distance between two vectors
Elementwise max operation on two arrays

Elementwise max operation between an array and a scalar
Merge several single-channel images into one multichannel image
Elementwise min operation on two arrays

Elementwise min operation between an array and a scalar

Find minimum and maximum values in an array

Elementwise multiplication of two arrays

Bitwise inversion of every element of an array

Compute normalized correlations between two arrays
Normalize elements in an array to some value

Elementwise bit-level OR of two arrays

Elementwise bit-level OR of an array and a scalar

Reduce a two-dimensional array to a vector by a given operation
Tile the contents of one array into another

Set all elements of an array to a given value

Set all elements of an array to 0

Set all elements of an array to 1 for the diagonal and 0 otherwise
Solve a system of linear equations

Split a multichannel array into multiple single-channel arrays
Elementwise subtraction of one array from another
Elementwise subtraction of a scalar from an array

Elementwise subtraction of an array from a scalar

Sum all elements of an array

Compute singular value decomposition of a two-dimensional array
Compute singular value back-substitution
Compute the trace of an array

Transpose all elements of an array across the diagonal
Elementwise bit-level XOR between two arrays

Elementwise bit-level XOR between an array and a scalar

Set all elements of an array to 0

cvAbs, cvAbsDiff, and cvAbsDiffS
void cvAbs(
const CVvArr* src,
const dst

)
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void cvAbsDiff(

const CvArr* srci,

const CvArr* src2,

const dst
);
void cvAbsDiffS(

const CvArT* src,

CvScalar value,

const dst

);
These functions compute the absolute value of an array or of the difference between the
array and some reference. The cvAbs() function simply computes the absolute value of
the elements in src and writes the result to dst; cvAbsDiff() first subtracts src2 from
src1 and then writes the absolute value of the difference to dst. Note that cvAbsDif+S()
is essentially the same as cvAbsDiff() except that the value subtracted from all of the

elements of src is the constant scalar value.

cvAdd, cvAddS, cvAddWeighted, and alpha blending

void cvAdd(

const CvArr* srci,

const CVvArr* src2,

CvATT* dst,

const CvArr* mask = NULL
)
void cvAddS(

const CvArr* src,

CvScalar value,

CvATT* dst,

const CvArr* mask = NULL
)
void cvAddiWeighted(

const CvArr* srci,

double alpha,
const CvArr* src2,
double beta,
double gamma,
CvArr* dst

);
cvAdd() is a simple addition function: it adds all of the elements in srci to the corre-
sponding elements in src2 and puts the results in dst. If mask is not set to NULL, then any
element of dst that corresponds to a zero element of mask remains unaltered by this op-
eration. The closely related function cvAddS() does the same thing except that the con-
stant scalar value is added to every element of src.

The function cvAddiWeighted() is similar to cvAdd() except that the result written to dst is
computed according to the following formula:

dstx,y =a-srcl + B sre2, +Y
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This function can be used to implement alpha blending [Smith79; Porter84]; that is, it
can be used to blend one image with another. The form of this function is:

void cvAddiWeighted(
const CvArr* srci,

double alpha,
const CvArr* src2,
double beta,
double gamma,
CvATrT* dst

);

In cvAddWeighted() we have two source images, src1 and src2. These images may be of
any pixel type so long as both are of the same type. They may also be one or three chan-
nels (grayscale or color), again as long as they agree. The destination result image, dst,
must also have the same pixel type as src1 and src2. These images may be of different
sizes, but their ROIs must agree in size or else OpenCV will issue an error. The param-
eter alpha is the blending strength of src1, and beta is the blending strength of src2. The
alpha blending equation is:

dstw =a-srel + B sre2, +y

You can convert to the standard alpha blend equation by choosing « between 0 and 1,
setting $ = 1 - @, and setting y to 0; this yields:

dst. =a-srcl +(1-a)-src2
X,y X,y X,y

However, cvAddieighted() gives us a little more flexibility—both in how we weight the
blended images and in the additional parameter y, which allows for an additive offset to
the resulting destination image. For the general form, you will probably want to keep
alpha and beta at no less than 0 and their sum at no more than 1; gamma may be set
depending on average or max image value to scale the pixels up. A program showing the
use of alpha blending is shown in Example 3-14.

Example 3-14. Complete program to alpha blend the ROI starting at (0,0) in src2 with the ROI
starting at (x,y) in srcl

// alphablend <imageA> <image B> <x> <y> <width> <height>
/! <alpha> <beta>

#include <cv.h>

#include <highgui.h>

int main(int argc, char** argv)
{
Iplimage *srci, *src2;
if( argc == 9 8&% ((srci=cvLoadImage(argv[1],1)) != 0
)8&((src2=cvLoadImage(argv[2],1)) != 0 ))
{
int x = atoi(argv[3]);
int y = atoi(argv[4]);
int width = atoi(argv(s]);
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Example 3-14. Complete program to alpha blend the ROI starting at (0,0) in src2 with the ROI
starting at (x,y) in srcl (continued)
int height = atoi(argv[6]);
double alpha = (double)atof(argv(7]);
double beta = (double)atof(argv[8]);
cvSetImageROI(srcl, cvRect(x,y,width,height));
cvSetImageROI(src2, cvRect(0,0,width,height));
cvAddWeighted(srcl, alpha, src2, beta,0.0,srcl);
cvResetImageROI(srcl);
cvNamedwindow( “Alpha_blend”, 1 );
cvShowImage( “Alpha blend”, srci );
cviaitkey();
}

return 0;

}

The code in Example 3-14 takes two source images: the primary one (src1) and the one
to blend (src2). It reads in a rectangle ROI for src1 and applies an ROI of the same size to
src2, this time located at the origin. It reads in alpha and beta levels but sets gamma to 0.
Alpha blending is applied using cvAddWeighted(), and the results are put into src1 and
displayed. Example output is shown in Figure 3-4, where the face of a child is blended
onto the face and body of a cat. Note that the code took the same ROI as in the ROI ad-
dition example in Figure 3-3. This time we used the ROI as the target blending region.

cvAnd and cvAndS

void cvAnd(
const CvArr* srci,
const CVvArr* src2,
CvArT* dst,
const CvArr* mask = NULL
)
void cvAndS(
const CvArr* srci,
CvScalar value,
CvArT* dst,
const CvArr* mask = NULL

);
These two functions compute a bitwise AND operation on the array srci. In the case of
cvAnd(), each element of dst is computed as the bitwise AND of the corresponding two
elements of src1 and src2. In the case of cvAndS(), the bitwise AND is computed with the
constant scalar value. As always, if mask is non-NULL then only the elements of dst cor-
responding to nonzero entries in mask are computed.

Though all data types are supported, src1 and src2 must have the same data type for
cvAnd(). If the elements are of a floating-point type, then the bitwise representation of
that floating-point number is used.
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Figure 3-4. The face of a child is alpha blended onto the face of a cat

cvAvg

CvScalar cvAvg(
const CvArr* arr,
const CvArr* mask = NULL

);
cvAvg() computes the average value of the pixels in arr. If mask is non-NULL then the aver-
age will be computed only over those pixels for which the corresponding value of mask
is nonzero.

This function has the now deprecated alias cvMean().

cvAvgSdv

cvAvgSdv(
const CvArr* arr,
CvScalar* mean,
CvScalar* std dev,
const CvArr* mask = NULL
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This function is like cvAvg(), but in addition to the average it also computes the standard
deviation of the pixels.

This function has the now deprecated alias cvMean_StdDev().

cvCalcCovarMatrix

void cvAdd(
const CvArr** vects,

int count,
CvATrT* cov_mat,
CvArr* avg,

int flags

);
Given any number of vectors, cvCalcCovarMatrix() will compute the mean and covari-
ance matrix for the Gaussian approximation to the distribution of those points. This can
be used in many ways, of course, and OpenCV has some additional flags that will help
in particular contexts (see Table 3-4). These flags may be combined by the standard use
of the Boolean OR operator.

Table 3-4. Possible components of flags argument to cvCalcCovarMatrix()

Flagin flags argument Meaning

CV_COVAR_NORMAL Compute mean and covariance
CV_COVAR_SCRAMBLED Fast PCA “scrambled” covariance
CV_COVAR_USE_AVERAGE Use avg as input instead of computing it
CV_COVAR_SCALE Rescale output covariance matrix

In all cases, the vectors are supplied in vects as an array of OpenCV arrays (i.e., a pointer
to a list of pointers to arrays), with the argument count indicating how many arrays are
being supplied. The results will be placed in cov_mat in all cases, but the exact meaning
of avg depends on the flag values (see Table 3-4).

The flags CV_COVAR_NORMAL and CV_COVAR_SCRAMBLED are mutually exclusive; you should
use one or the other but not both. In the case of CV_COVAR_NORMAL, the function will sim-
ply compute the mean and covariance of the points provided.

Thus the normal covariance X2, is computed from the m vectors of length 1, where
v, is defined as the nth element of the average vector v. The resulting covariance matrix
is an n-by-n matrix. The factor z is an optional scale factor; it will be set to 1 unless the

CV_COVAR_SCALE flag is used.
In the case of CV_COVAR_SCRAMBLED, cvCalcCovarMatrix() will compute the following:
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scrambled

z

This matrix is not the usual covariance matrix (note the location of the transpose op-
erator). This matrix is computed from the same m vectors of length #, but the resulting
scrambled covariance matrix is an m-by-m matrix. This matrix is used in some specific
algorithms such as fast PCA for very large vectors (as in the eigenfaces technique for face
recognition).

The flag CV_COVAR_USE_AVG is used when the mean of the input vectors is already known.
In this case, the argument avg is used as an input rather than an output, which reduces
computation time.

Finally, the flag Cv_COVAR_SCALE is used to apply a uniform scale to the covariance matrix
calculated. This is the factor z in the preceding equations. When used in conjunction
with the CV_COVAR_NORMAL flag, the applied scale factor will be 1.0/m (or, equivalently, 1.0/
count). If instead CV_COVAR_SCRAMBLED is used, then the value of z will be 1.0/# (the inverse
of the length of the vectors).

The input and output arrays to cvCalcCovarMatrix() should all be of the same float-
ing-point type. The size of the resulting matrix cov_mat should be either n-by-n or
m-by-m depending on whether the standard or scrambled covariance is being com-
puted. It should be noted that the “vectors” input in vects do not actually have to be one-
dimensional; they can be two-dimensional objects (e.g., images) as well.

cvCmp and cvCmpS

void cvCmp(
const CvArr* srci,
const CVvArr* src2,
CvATrT* dst,
int cmp_op
);
void cvCmpS(
const CvArr* src,

double value,
CvATrT* dst,
int cmp_op

);
Both of these functions make comparisons, either between corresponding pixels in two
images or between pixels in one image and a constant scalar value. Both cvCmp() and
cvCmpS() take as their last argument a comparison operator, which may be any of the
types listed in Table 3-5.
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Table 3-5. Values of cmp_op used by cvCmp() and cvCmpS()
and the resulting comparison operation performed

Value of cmp_op Comparison

CV_CMP_EQ (src1i == src2i)
CV_CMP_GT (src1i > src2i)
CV_CMP_GE (src1i >= src2i)
CV_CMP_LT (src1i < src2i)
CV_CMP_LE (src1i <= src2i)
CV_CMP_NE (src1i != src2i)

All the listed comparisons are done with the same functions; you just pass in the ap-
propriate argument to indicate what you would like done. These particular functions
operate only on single-channel images.

These comparison functions are useful in applications where you employ some version
of background subtraction and want to mask the results (e.g., looking at a video stream
from a security camera) such that only novel information is pulled out of the image.

cvConvertScale

void cvConvertScale(
const CvArr* src,

CvATT* dst,
double scale = 1.0,
double shift = 0.0

);
The cvConvertScale() function is actually several functions rolled into one; it will per-
form any of several functions or, if desired, all of them together. The first function is to
convert the data type in the source image to the data type of the destination image. For
example, if we have an 8-bit RGB grayscale image and would like to convert it to a 16-bit
signed image, we can do that by calling cvConvertScale().

The second function of cvConvertScale() is to perform a linear transformation on the
image data. After conversion to the new data type, each pixel value will be multiplied by
the value scale and then have added to it the value shift.

It is critical to remember that, even though “Convert” precedes “Scale” in the function
name, the actual order in which these operations is performed is the opposite. Specifi-
cally, multiplication by scale and the addition of shift occurs before the type conver-
sion takes place.

When you simply pass the default values (scale = 1.0 and shift = 0.0), you need not
have performance fears; OpenCV is smart enough to recognize this case and not waste
processor time on useless operations. For clarity (if you think it adds any), OpenCV also
provides the macro cvConvert(), which is the same as cvConvertScale() but is conven-
tionally used when the scale and shift arguments will be left at their default values.
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cvConvertScale() will work on all data types and any number of channels, but the num-
ber of channels in the source and destination images must be the same. (If you want to,
say, convert from color to grayscale or vice versa, see cvCvtColor(), which is coming up
shortly.)

cvConvertScaleAbs

void cvConvertScaleAbs(
const CvArr* src,

CvArr* dst,
double scale = 1.0,
double shift = 0.0

);
cvConvertScaleAbs() is essentially identical to cvConvertScale() except that the dst im-
age contains the absolute value of the resulting data. Specifically, cvConvertScaleAbs()
first scales and shifts, then computes the absolute value, and finally performs the data-
type conversion.

cvCopy

void cvCopy(
const CvArr* src,
CvArr* dst,
const CvArr* mask = NULL

);
This is how you copy one image to another. The cvCopy() function expects both arrays to
have the same type, the same size, and the same number of dimensions. You can use it
to copy sparse arrays as well, but for this the use of mask is not supported. For nonsparse
arrays and images, the effect of mask (if non-NULL) is that only the pixels in dst that cor-
respond to nonzero entries in mask will be altered.

cvCountNonZero

int cvCountNonZero( const CvArr* arr );

cvCountNonZero() returns the number of nonzero pixels in the array arr.

cvCrossProduct

void cvCrossProduct(
const CvArr* srci,
const CvArr* src2,
CvATrr* dst

);
This function computes the vector cross product [Lagrangel773] of two three-
dimensional vectors. It does not matter if the vectors are in row or column form (a little
reflection reveals that, for single-channel objects, these two are really the same inter-
nally). Both src1 and src2 should be single-channel arrays, and dst should be single-
channel and of length exactly 3.All three arrays should be of the same data type.
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cvCvtColor

void cvCvtColor(
const CvArr* src,
CvArTr* dst,
int code

);
The previous functions were for converting from one data type to another, and they
expected the number of channels to be the same in both source and destination im-
ages. The complementary function is cvCvtColor(), which converts from one color space
(number of channels) to another [Wharton71] while expecting the data type to be the
same. The exact conversion operation to be done is specified by the argument code,
whose possible values are listed in Table 3-6.%

Table 3-6. Conversions available by means of cvCvtColor()

Conversion code Meaning
CV_BGR2RGB Convert between RGB and BGR color spaces (with or without alpha channel)
CV_RGB2BGR

CV_RGBA2BGRA
CV_BGRA2RGBA

CV_RGB2RGBA Add alpha channel to RGB or BGR image
CV_BGR2BGRA
CV_RGBA2RGB Remove alpha channel from RGB or BGR image

CV_BGRA2BGR

CV_RGB2BGRA Convert RGB to BGR color spaces while adding or removing alpha channel
CV_RGBA2BGR
CV_BGRA2RGB
CV_BGR2RGBA

CV_RGB2GRAY Convert RGB or BGR color spaces to grayscale

CV_BGR2GRAY

CV_GRAY2RGB Convert grayscale to RGB or BGR color spaces (optionally removing alpha channel
CV_GRAY2BGR in the process)

CV_RGBA2GRAY
CV_BGRA2GRAY

CV_GRAY2RGBA Convert grayscale to RGB or BGR color spaces and add alpha channel
CV_GRAY2BGRA

CV_RGB2BGR565 Convert from RGB or BGR color space to BGR565 color representation with
CV_BGR2BCR565 optional addition or removal of alpha channel (16-bit images)

CV_BGR5652RGB
CV_BGR5652BGR
CV_RGBA2BGR565
CV_BGRA2BGR565
CV_BGR5652RGBA
CV_BGR5652BGRA

CV_GRAY2BGR565 Convert grayscale to BGR565 color representation or vice versa (16-bit images)
CV_BGR5652GRAY

X

Long-time users of IPL should note that the function cvCvtColor() ignores the colorModel and chan-
nelSeq fields of the IplImage header. The conversions are done exactly as implied by the code argument.
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Table 3-6. Conversions available by means of cvCvtColor() (continued)

Conversion code

CV_RGB2BGR555
CV_BGR2BGR555
CV_BGRS5552RGB
CV_BGRS5552BCR
CV_RGBA2BGR555
CV_BGRA2BGR555
CV_BGR5552RGBA
CV_BGR5552BGRA

CV_GRAY2BGR555
CV_BGRS552GRAY

CV_RGB2XYZ
CV_BGR2XYZ
CV_XYZ2RGB
CV_XYZ2BGR

CV_RGB2YCrCb
CV_BGR2YCrCh
CV YCrCh2RGB
CV YCrCh2BGR

CV_RGB2HSV
CV_BGR2HSV
CV_HSV2RGB
CV_HSV2BGR

CV_RGB2HLS
CV_BGR2HLS
CV_HLS2RGB
CV_HLS2BGR

CV_RGB2Lab
CV_BGR2Lab
CV_Lab2RGB
CV_Lab2BGR

CV_RGB2Luv
CV_BGR2Luv
CV_Luv2RGB
CV_Luv2BGR

CV_BayerBG2RGB
CV_BayerGB2RGB
CV_BayerRG2RGB
CV_BayerGR2RGB
CV_BayerBG2BGR
CV_BayerGB2BGR
CV_BayerRG2BGR
CV_BayerGR2BGR

Meaning

Convert from RGB or BGR color space to BGR555 color representation with
optional addition or removal of alpha channel (16-bit images)

Convert grayscale to BGR555 color representation or vice versa (16-bit images)

Convert RGB or BGR image to CIE XYZ representation or vice versa (Rec 709 with
D65 white point)

Convert RGB or BGR image to luma-chroma (aka YCC) color representation

Convert RGB or BGR image to HSV (hue saturation value) color representation or
vice versa

Convert RGB or BGR image to HLS (hue lightness saturation) color representation

or vice versa

Convert RGB or BGR image to CIE Lab color representation or vice versa

Convert RGB or BGR image to CIE Luv color representation

Convert from Bayer pattern (single-channel) to RGB or BGR image

The details of many of these conversions are nontrivial, and we will not go into the sub-
tleties of Bayer representations of the CIE color spaces here. For our purposes, it is suf-
ficient to note that OpenCV contains tools to convert to and from these various color
spaces, which are of importance to various classes of users.

The color-space conversions all use the conventions: 8-bit images are in the range 0-255,
16-bit images are in the range 0-65536, and floating-point numbers are in the range
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0.0-1.0. When grayscale images are converted to color images, all components of the
resulting image are taken to be equal; but for the reverse transformation (e.g., RGB or
BGR to grayscale), the gray value is computed using the perceptually weighted formula:

Y =(0.299)R+(0.587)G+(0.114)B

In the case of HSV or HLS representations, hue is normally represented as a value from
0 to 360.* This can cause trouble in 8-bit representations and so, when converting to
HSYV, the hue is divided by 2 when the output image is an 8-bit image.

cvDet

double cvDet(
const CvArr* mat

);
cvDet() computes the determinant (Det) of a square array. The array can be of any data
type, but it must be single-channel. If the matrix is small then the determinant is di-
rectly computed by the standard formula. For large matrices, this is not particularly
efficient and so the determinant is computed by Gaussian elimination.

It is worth noting that if you already know that a matrix is symmetric and has a posi-
tive determinant, you can also use the trick of solving via singular value decomposition
(SVD). For more information see the section “cvSVD” to follow, but the trick is to set
both U and V to NULL and then just take the products of the matrix W to obtain the
determinant.

cvDiv

void cvDiv(
const CvArr* srci,
const CvArr* src2,
CvArr* dst,
double scale = 1

);
cvDiv() is a simple division function; it divides all of the elements in src1 by the cor-
responding elements in src2 and puts the results in dst. If mask is non-NULL, then any
element of dst that corresponds to a zero element of mask is not altered by this operation.
If you only want to invert all the elements in an array, you can pass NULL in the place of
srci; the routine will treat this as an array full of 1s.

cvDotProduct

double cvDotProduct(
const CvArr* srci,
const CvArr* src2

)

* Excluding 360, of course.
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This function computes the vector dot product [Lagrangel773] of two N-dimensional
vectors.* As with the cross product (and for the same reason), it does not matter if the
vectors are in row or column form. Both src1 and src2 should be single-channel arrays,
and both arrays should be of the same data type.

cvEigenVV

double cvEigenVV(
CvArr* mat,
CvArr* evects,
CvArT* evals,
double eps =0
);
Given a symmetric matrix mat, cvEigenvV() will compute the eigenvectors and the corre-
sponding eigenvalues of that matrix. This is done using Jacobi’s method [Bronshtein97], so
it is efficient for smaller matrices.T Jacobi’s method requires a stopping parameter, which
is the maximum size of the off-diagonal elements in the final matrix.* The optional ar-
gument eps sets this termination value. In the process of computation, the supplied ma-
trix mat is used for the computation, so its values will be altered by the function. When
the function returns, you will find your eigenvectors in evects in the form of subsequent
rows. The corresponding eigenvalues are stored in evals. The order of the eigenvectors
will always be in descending order of the magnitudes of the corresponding eigenvalues.
The cvEigenVV() function requires all three arrays to be of floating-point type.

As with cvDet() (described previously), if the matrix in question is known to be sym-
metric and positive definited then it is better to use SVD to find the eigenvalues and
eigenvectors of mat.

cvFlip

void cvFlip(
const CvArr* src,
CvATT* dst = NULL,
int flip_mode = 0
);
This function flips an image around the x-axis, the y-axis, or both. In particular, if
the argument flip _mode is set to 0 then the image will be flipped around the x-axis.

* Actually, the behavior of cvDotProduct() is a little more general than described here. Given any pair of
n-by-m matrices, cvDotProduct() will return the sum of the products of the corresponding elements.

T A good rule of thumb would be that matrices 10-by-10 or smaller are small enough for Jacobi’s method to be
efficient. If the matrix is larger than 20-by-20 then you are in a domain where this method is probably not
the way to go.

i In principle, once the Jacobi method is complete then the original matrix is transformed into one that is
diagonal and contains only the eigenvalues; however, the method can be terminated before the off-diagonal
elements are all the way to zero in order to save on computation. In practice is it usually sufficient to set this
value to DBL_EPSILON, or about 107",

§ This is, for example, always the case for covariance matrices. See cvCalcCovarMatrix().

Matrix and Image Operators | 61



If f1ip mode is set to a positive value (e.g., +1) the image will be flipped around the y-
axis, and if set to a negative value (e.g., -1) the image will be flipped about both axes.

When video processing on Win32 systems, you will find yourself using this function
often to switch between image formats with their origins at the upper-left and lower-left
of the image.

cvGEMM

double cvGEMM(
const CvArr* srci,
const CvArr* src2,

double alpha,
const CvArr* src3,
double beta,
CvATT* dst,

int tABC = 0

);
Generalized matrix multiplication (GEMM) in OpenCV is performed by cvGEMM(),
which performs matrix multiplication, multiplication by a transpose, scaled multiplica-
tion, et cetera. In its most general form, cvGEMM() computes the following:

D=ca-op(A)-op(B)+f-0p(C)

Where A, B, and C are (respectively) the matrices src1, src2, and src3, & and f3 are nu-
merical coefficients, and op() is an optional transposition of the matrix enclosed. The
argument src3 may be set to NULL, in which case it will not be added. The transpositions
are controlled by the optional argument tABC, which may be 0 or any combination (by
means of Boolean OR) of CV GEMM_A T, CV_GEMM B T, and CV_GEMM_C T (with each flag indi-
cating a transposition of the corresponding matrix).

In the distant past OpenCV contained the methods cvMatMul() and cvMatMulAdd(), but
these were too often confused with cvMul(), which does something entirely different
(i.e., element-by-element multiplication of two arrays). These functions continue to ex-
ist as macros for calls to cvGEMM(). In particular, we have the equivalences listed in
Table 3-7.

Table 3-7. Macro aliases for common usages of cvGEMM()
cvMatMul(A, B, D) CVGEMM(A, A, 1, NULL, 0, D, 0)
cvMatMulAdd(A, B, C, D)  cvGEMM(A, A, 1, C, 1, D, 0)

All matrices must be of the appropriate size for the multiplication, and all should be
of floating-point type. The cvGEMM() function supports two-channel matrices, in which
case it will treat the two channels as the two components of a single complex number.

cvGetCol and cvGetCols

CvMat* cvGetCol(
const CvArr* arr,
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CvMat* submat,
int col

)

CvMat* cvGetCols(
const CvArr* arr,

CvMat* submat,
int start _col,
int end col

);
The function cvGetCol() is used to pick a single column out of a matrix and return it as
a vector (i.e., as a matrix with only one column). In this case the matrix header submat
will be modified to point to a particular column in arr. It is important to note that such
header modification does not include the allocation of memory or the copying of data.
The contents of submat will simply be altered so that it correctly indicates the selected
column in arr. All data types are supported.

cvGetCols() works precisely the same way, except that all columns from start_col to
end col are selected. With both functions, the return value is a pointer to a header cor-
responding to the particular specified column or column span (i.e., submat) selected by
the caller.

cvGetDiag

CvMat* cvGetDiag(
const CvArr* arr,
CvMat* submat,
int diag =0
);
cvGetDiag() is analogous to cvGetCol(); it is used to pick a single diagonal from a
matrix and return it as a vector. The argument submat is a matrix header. The function
cvGetDiag() will fill the components of this header so that it points to the correct infor-
mation in arr. Note that the result of calling cvGetDiag() is that the header you supplied
is correctly configured to point at the diagonal data in arr, but the data from arr is not
copied. The optional argument diag specifies which diagonal is to be pointed to by sub-
mat. If diag is set to the default value of 0, the main diagonal will be selected. If diag is
greater than 0, then the diagonal starting at (diag,0) will be selected; if diag is less than
0, then the diagonal starting at (0,-diag) will be selected instead. The cvGetDiag() func-
tion does not require the matrix arr to be square, but the array submat must have the
correct length for the size of the input array. The final returned value is the same as the
value of submat passed in when the function was called.

cvGetDims and cvGetDimSize

int cvGetDims(

const CvArr* arr,

int* sizes=NULL
)
int cvGetDimSize(

const CvArr* arr,
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int index
);
Recall that arrays in OpenCV can be of dimension much greater than two. The function
cvGetDims() returns the number of array dimensions of a particular array and (option-
ally) the sizes of each of those dimensions. The sizes will be reported if the array sizes is
non-NULL. If sizes is used, it should be a pointer to n integers, where # is the number of
dimensions. If you do not know the number of dimensions in advance, you can allocate
sizes to CV_MAX_DIM integers just to be safe.

The function cvGetDimSize() returns the size of a single dimension specified by index.
If the array is either a matrix or an image, the number of dimensions returned will al-
ways be two.* For matrices and images, the order of sizes returned by cvGetDims() will
always be the number of rows first followed by the number of columns.

cvGetRow and cvGetRows

CvMat* cvGetRow(
const CvArr* arr,
CvMat* submat,
int Tow

)

CvMat* cvGetRows(
const CvArr* arr,

CvMat* submat,
int start_row,
int end row

);
cvGetRow() picks a single row out of a matrix and returns it as a vector (a matrix with
only one row). As with cvGetRow(), the matrix header submat will be modified to point to
a particular row in arr, and the modification of this header does not include the alloca-
tion of memory or the copying of data; the contents of submat will simply be altered such
that it correctly indicates the selected column in arr. All data types are supported.

The function cvGetRows() works precisely the same way, except that all rows from start_
row to end_row are selected. With both functions, the return value is a pointer to a header
corresponding to the particular specified row or row span selected by the caller.

cvGetSize

CvSize cvGetSize( const CvArr* arr );
Closely related to cvGetDims(), cvGetSize() returns the size of an array. The primary dif-
ference is that cvGetSize() is designed to be used on matrices and images, which always
have dimension two. The size can then be returned in the form of a CvSize structure,
which is suitable to use when (for example) constructing a new matrix or image of the
same size.

* Remember that OpenCV regards a “vector” as a matrix of size n-by-1 or 1-by-n.
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cvGetSubRect

CvSize cvGetSubRect(
const CvArr* arr,
CvATrT* submat,
CvRect rect

);
cvGetSubRect() is similar to cvGetColumns() or cvGetRows() except that it selects some
arbitrary subrectangle in the array specified by the argument rect. As with other rou-
tines that select subsections of arrays, submat is simply a header that will be filled by
cvGetSubRect() in such a way that it correctly points to the desired submatrix (i.e., no
memory is allocated and no data is copied).

cvinRange and cvinRangeS

void cvInRange(
const CvArr* src,
const CvArr* lower,
const CvArr* upper,
CvArr* dst

)

void cvInRangeS(
const CvArr* src,

CvScalar lower,
CvScalar upper,
CvArr* dst

);
These two functions can be used to check if the pixels in an image fall within a particu-
lar specified range. In the case of cvInRange(), each pixel of src is compared with the
corresponding value in the images lower and upper. If the value in src is greater than or
equal to the value in lower and also less than the value in upper, then the corresponding
value in dst will be set to oxff; otherwise, the value in dst will be set to 0.

The function cvInRangeS() works precisely the same way except that the image src is
compared to the constant (CvScalar) values in lower and upper. For both functions, the
image src may be of any type; if it has multiple channels then each channel will be
handled separately. Note that dst must be of the same size and number of channels and
also must be an 8-bit image.

cvinvert

double cvInvert(
const CvArr* src,
CvArr* dst,
Int method = CV_LU
);
cvInvert() inverts the matrix in src and places the result in dst. This function sup-
ports several methods of computing the inverse matrix (see Table 3-8), but the default is
Gaussian elimination. The return value depends on the method used.
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Table 3-8. Possible values of method argument to cvInvert()

Value of method argument Meaning

Cv LU Gaussian elimination (LU Decomposition)
CV_SVD Singular value decomposition (SVD)
CV_SVD_SYM SVD for symmetric matrices

In the case of Gaussian elimination (method=CV_LU), the determinant of src is returned
when the function is complete. If the determinant is 0, then the inversion is not actually
performed and the array dst is simply set to all Os.

In the case of CV_SVD or CV_SVD SYM, the return value is the inverse condition number for
the matrix (the ratio of the smallest to the largest eigenvalue). If the matrix src is singu-
lar, then cvInvert() in SVD mode will instead compute the pseudo-inverse.

cvMahalonobis

CvSize cvMahalonobis(
const CvArr* veci,
const CvArr* vec2,
CvArr* mat

);
The Mahalonobis distance (Mahal) is defined as the vector distance measured between
a point and the center of a Gaussian distribution; it is computed using the inverse co-
variance of that distribution as a metric. See Figure 3-5. Intuitively, this is analogous
to the z-score in basic statistics, where the distance from the center of a distribution is
measured in units of the variance of that distribution. The Mahalonobis distance is just
a multivariable generalization of the same idea.

cvMahalonobis() computes the value:

rMahalonobis = \/(X -u )T 2_1 (X -1 )

The vector vecl is presumed to be the point x, and the vector vec2 is taken to be the dis-
tribution’s mean.* That matrix mat is the inverse covariance.

In practice, this covariance matrix will usually have been computed with cvCalcCovar
Matrix() (described previously) and then inverted with cvInvert(). It is good program-
ming practice to use the SV_SVD method for this inversion because someday you will en-
counter a distribution for which one of the eigenvalues is 0!

cvMax and cvMaxS

void cvMax(
const CvArr* srci,
const CvArr* src2,

* Actually, the Mahalonobis distance is more generally defined as the distance between any two vectors;
in any case, the vector vec2 is subtracted from the vector vecl. Neither is there any fundamental con-
nection between mat in cvMahalonobis() and the inverse covariance; any metric can be imposed here as
appropriate.
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> X

Figure 3-5. A distribution of points in two dimensions with superimposed ellipsoids representing
Mahalonobis distances of 1.0, 2.0, and 3.0 from the distribution’s mean

CvArr* dst
3;id cvMaxS(

const CvArr* src,

double value,

CvArT* dst

);
cvMax() computes the maximum value of each corresponding pair of pixels in the arrays
srcl and src2. With cvMaxS(), the src array is compared with the constant scalar value.
As always, if mask is non-NULL then only the elements of dst corresponding to nonzero
entries in mask are computed.

cvMerge

void cvMerge(
const CvArr* srco,
const CvArr* srci,
const CvArr* src2,
const CvArr* src3,
CvArr* dst
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cvMerge() is the inverse operation of cvSplit(). The arrays in srco, srci, src2, and src3
are combined into the array dst. Of course, dst should have the same data type and
size as all of the source arrays, but it can have two, three, or four channels. The unused
source images can be left set to NULL.

cvMin and cvMinS

void cvMin(
const CvArr* srci,
const CvArr* src2,
CvATT* dst

)

void cvMinS(
const CvArTr* src,
double value,
CvArr* dst

);
cvMin() computes the minimum value of each corresponding pair of pixels in the ar-
rays srcl and src2. With cvMinS(), the src arrays are compared with the constant scalar
value. Again, if mask is non-NULL then only the elements of dst corresponding to nonzero
entries in mask are computed.

cvMinMaxLoc

void cvMinMaxLoc(
const CvArr* arr,
double* min val,
double* max_val,
CvPoint* min loc = NULL,
CvPoint* max_loc = NULL,
const CvArr* mask = NULL

);
This routine finds the minimal and maximal values in the array arr and (optionally)
returns their locations. The computed minimum and maximum values are placed in
min_val and max_val. Optionally, the locations of those extrema will also be written to
the addresses given by min_loc and max_loc if those values are non-NULL.

As usual, if mask is non-NULL then only those portions of the image arr that corre-
spond to nonzero pixels in mask are considered. The cvMinMaxLoc() routine handles only
single-channel arrays, however, so if you have a multichannel array then you should use
cvSetCoI() to set a particular channel for consideration.

cvMul

void cvMul(
const CvArr* srci,
const CvArr* src2,
CvATT* dst,
double scale=1

)
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cvMul() is a simple multiplication function. It multiplies all of the elements in src1 by
the corresponding elements in src2 and then puts the results in dst. If mask is non-NULL,
then any element of dst that corresponds to a zero element of mask is not altered by this
operation. There is no function cvMulS() because that functionality is already provided
by cvScale() or cvCvtScale().

One further thing to keep in mind: cvMul() performs element-by-element multiplica-
tion. Someday, when you are multiplying some matrices, you may be tempted to reach
for cvMul(). This will not work; remember that matrix multiplication is done with
cVGEMM(), not cvMul().

cvNot
void(
const CVArT* src,
CvATrT* dst

);
The function cvNot() inverts every bit in every element of src and then places the result
in dst. Thus, for an 8-bit image the value 0x00 would be mapped to 0xft and the value
0x83 would be mapped to 0x7c.

cvNorm

double cvNorm(
const CvArr* arri,

const CvArr* arr2 = NULL,
int norm type = CV_L2,
const CvArr* mask = NULL

);
This function can be used to compute the total norm of an array and also a variety of
relative distance norms if two arrays are provided. In the former case, the norm com-
puted is shown in Table 3-9.

Table 3-9. Norm computed by cvNorm() for different values of norm_type when arr2=NULL

norm_type Result

e [|am1]| =max, abs(amr1, )
v L1 ||arr1||U:X§;‘ abs(am1, )
oV L2 o, =3, art,

If the second array argument arr2 is non-NULL, then the norm computed is a difference
norm—that is, something like the distance between the two arrays.* In the first three

* At least in the case of the L2 norm, there is an intuitive interpretation of the difference norm as a Euclidean
distance in a space of dimension equal to the number of pixels in the images.
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cases shown in Table 3-10, the norm is absolute; in the latter three cases it is rescaled by
the magnitude of the second array arr2.

Table 3-10. Norm computed by cvNorm() for different values of norm_type when arr2 is non-NULL

norm_type Result
v e [lam1—an2|| =max, abs(am1, -am2, )
v L1 ||arr1—arr2||uzxz; abs(an1, —am2, )
v L2 [lam—an2] =" (am1, —am2, )’
Xy
CV_RELATIVE C [|am1—an2 |,
llam2]
CV_ RELATIVE_L1 [lam1—am2||,
llan2],
CV_ RELATIVE_L2 [lam1—an2||,
llan2l,

In all cases, arr1 and arr2 must have the same size and number of channels. When there
is more than one channel, the norm is computed over all of the channels together (i.e.,
the sums in Tables 3-9 and 3-10 are not only over x and y but also over the channels).

cvNormalize
cvNormalize(

const CvArr* src,

CvATrT* dst,

double a = 1.0,
double b = 0.0,
int norm_type = CV_L2,
const CvArr* mask = NULL

);
As with so many OpenCV functions, cvNormalize() does more than it might at first ap-
pear. Depending on the value of norm_type, image src is normalized or otherwise mapped
into a particular range in dst. The possible values of norm_type are shown in Table 3-11.

Table 3-11. Possible values of norm_type argument to cvNormalize()

norm_type Result

v.e [|am1]| =max , abs(/, )=a

oL Jaml =, abstr,,)=a
dst

Cv_ L2 ||arr]||u:2 /jy:a
ot

CV_MINMAX Map into range [q, b]
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In the case of the C norm, the array src is rescaled such that the magnitude of the abso-
lute value of the largest entry is equal to a. In the case of the L1 or L2 norm, the array is
rescaled so that the given norm is equal to the value of a. If norm_type is set to CV_MINMAX,
then the values of the array are rescaled and translated so that they are linearly mapped
into the interval between a and b (inclusive).

As before, if mask is non-NULL then only those pixels corresponding to nonzero values of
the mask image will contribute to the computation of the norm—and only those pixels
will be altered by cvNormalize().

cvOr and cvOrS

void cvOr(
const CvArr* srci,
const CvArr* src2,
CvArr* dst,
const CvArr* mask=NULL
);
void cvOrsS(
const CvArr* src,
CvScalar value,
CvArr* dst,
const CvArr* mask = NULL

);
These two functions compute a bitwise OR operation on the array srci. In the case of
cv0r(), each element of dst is computed as the bitwise OR of the corresponding two
elements of src1 and src2. In the case of cv0rS(), the bitwise OR is computed with the
constant scalar value. As usual, if mask is non-NULL then only the elements of dst corre-
sponding to nonzero entries in mask are computed.

All data types are supported, but src1 and src2 must have the same data type for
cv0r(). If the elements are of floating-point type, then the bitwise representation of that
floating-point number is used.

cvReduce

CvSize cvReduce(
const CVvArr* src,

CvArTr* dst,
int dim,
int op = CV_REDUCE_SUM

)
Reduction is the systematic transformation of the input matrix src into a vector dst
by applying some combination rule op on each row (or column) and its neighbor until
only one row (or column) remains (see Table 3-12). The argument op controls how the
reduction is done, as summarized in Table 3-13.

* Purists will note that averaging is not technically a proper fold in the sense implied here. OpenCV has a
more practical view of reductions and so includes this useful operation in cvReduce.
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Table 3-12. Argument op in cvReduce() selects the reduction operator

Value of op Result

CV_REDUCE_SUM Compute sum across vectors
CV_REDUCE_AVG Compute average across vectors
CV_REDUCE_MAX Compute maximum across vectors
CV_REDUCE_MIN Compute minimum across vectors

Table 3-13. Argument dim in cvReduce() controls the direction of the reduction

Value of dim Result

+1 Collapse to a single row

0 Collapse to a single column

-1 Collapse as appropriate for dst

cvReduce() supports multichannel arrays of floating-point type. It is also allowable to
use a higher precision type in dst than appears in src. This is primarily relevant for CV_
REDUCE_SUM and CV_REDUCE_AVG, where overflows and summation problems are possible.

cvRepeat

void cvRepeat(
const CvArr* src,
CvArT* dst

);
This function copies the contents of src into dst, repeating as many times as necessary
to fill dst. In particular, dst can be of any size relative to src. It may be larger or smaller,
and it need not have an integer relationship between any of its dimensions and the cor-
responding dimensions of src.

cvScale

void cvScale(
const CvArr* src,
CvATrT* dst,
double scale

);
The function cvScale() is actually a macro for cvConvertScale() that sets the shift argu-
ment to 0.0. Thus, it can be used to rescale the contents of an array and to convert from
one kind of data type to another.

cvSet and cvSetZero
void cvSet(
CvATT* arr,
CvScalar value,
const CvArr* mask = NULL

)
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These functions set all values in all channels of the array to a specified value. The
cvSet() function accepts an optional mask argument: if a mask is provided, then only
those pixels in the image arr that correspond to nonzero values of the mask image will
be set to the specified value. The function cvSetZero() is just a synonym for cvSet(0.0).

cvSetldentity

void cvSetIdentity( CvArr* arr );
cvSetIdentity() sets all elements of the array to 0 except for elements whose row and
column are equal; those elements are set to 1. cvSetIdentity() supports all data types
and does not even require the array to be square.

cvSolve

int cvSolve(
const CvArr* srci,
const CvArr* src2,
CvArr* dst,
int method = CV_LU

)
The function cvSolve() provides a fast way to solve linear systems based on cvInvert().
It computes the solution to

C=argmin ”A ‘X - B"

where A is a square matrix given by srci, B is the vector src2, and C is the solution
computed by cvSolve() for the best vector X it could find. That best vector X is returned
in dst. The same methods are supported as by cvInvert() (described previously); only
floating-point data types are supported. The function returns an integer value where a
nonzero return indicates that it could find a solution.

It should be noted that cvSolve() can be used to solve overdetermined linear systems.
Overdetermined systems will be solved using something called the pseudo-inverse,
which uses SVD methods to find the least-squares solution for the system of equations.

cvSplit

void cvSplit(
const CvArr* src,

CvArTr* dsto,
CvArr* dsti,
CvATT* dst2,
CvATT* dst3

);
There are times when it is not convenient to work with a multichannel image. In such
cases, we can use cvSplit() to copy each channel separately into one of several sup-
plied single-channel images. The cvSplit() function will copy the channels in src into
the images dsto, dst1, dst2, and dst3 as needed. The destination images must match
the source image in size and data type but, of course, should be single-channel images.
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If the source image has fewer than four channels (as it often will), then the unneeded
destination arguments to cvSplit() can be set to NULL.

cvSub

void cvSub(
const CvArr* srci,
const CvArr* src2,
CvATT* dst,
const CvArr* mask = NULL
);
This function performs a basic element-by-element subtraction of one array src2 from
another src1 and places the result in dst. If the array mask is non-NULL, then only those
elements of dst corresponding to nonzero elements of mask are computed. Note that
srcl, src2, and dst must all have the same type, size, and number of channels; mask, if
used, should be an 8-bit array of the same size and number of channels as dst.

cvSub, cvSubS, and cvSubRS

void cvSub(

const CvArr* srci,

const CvArr* src2,

CvATT* dst,

const CvArr* mask = NULL
)
void cvSubS(

const CvArr* src,

CvScalar value,
CvATT* dst,
const CvArr* mask = NULL
)
void cvSubRS(
const CvArr* src,
CvScalar value,
CvATT* dst,
const CvArr* mask = NULL

);

cvSub() is a simple subtraction function; it subtracts all of the elements in src2 from the
corresponding elements in src1 and puts the results in dst. If mask is non-NULL, then any
element of dst that corresponds to a zero element of mask is not altered by this operation.
The closely related function cvSubS() does the same thing except that the constant scalar
value is added to every element of src. The function cvSubRS() is the same as cvSubS()
except that, rather than subtracting a constant from every element of src, it subtracts
every element of src from the constant value.

cvSum

CvScalar cvSum(
CvArr* arr

)
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cvSum() sums all of the pixels in all of the channels of the array arr. Observe that the
return value is of type CvScalar, which means that cvSum() can accommodate multi-
channel arrays. In that case, the sum for each channel is placed in the corresponding
component of the CvScalar return value.

cvSVD
void cvSVD(
CVvATT* A,
CvArr* W,
CvATT* U = NULL,
CvArT* V = NULL,
int flags = 0

);
Singular value decomposition (SVD) is the decomposing of an m-by-m matrix A into
the form:

A=U-W-V'

where W is a diagonal matrix and U and V are m-by-m and n-by-n unitary matrices.
Of course the matrix W is also an m-by-n matrix, so here “diagonal” means that any
element whose row and column numbers are not equal is necessarily 0. Because W is
necessarily diagonal, OpenCV allows it to be represented either by an m-by-n matrix or
by an n-by-1 vector (in which case that vector will contain only the diagonal “singular”
values).

The matrices U and V are optional to cvSVD(), and if they are left set to NULL then no value
will be returned. The final argument flags can be any or all of the three options de-
scribed in Table 3-14 (combined as appropriate with the Boolean OR operator).
Table 3-14. Possible flags for flags argument to cvSVD()

Flag Result

CV_SVD_MODIFY A Allows modification of matrix A

CVSWUT Return UTinstead of U

CV.SWD V. T Return VTinstead of V

cvSVBKkSh

void cvSVBkSb(
const CvArr*
const CvArr*
const CvArr*
const CvArr*
CVvATT* X,
int flags

<c =
e S

o
-

n
o

);
This is a function that you are unlikely to call directly. In conjunction with cvSVD() (just
described), it underlies the SVD-based methods of cvInvert() and cvSolve(). That be-
ing said, you may want to cut out the middleman and do your own matrix inversions
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(depending on the data source, this could save you from making a bunch of memory
allocations for temporary matrices inside of cvInvert() or cvSolve()).

The function cvSVBkSb() computes the back-substitution for a matrix A that is repre-
sented in the form of a decomposition of matrices U, W, and V (e.g., an SVD). The result
matrix X is given by the formula:

X=V-W .U"-B
The matrix B is optional, and if set to NULL it will be ignored. The matrix W* is a matrix
whose diagonal elements are defined by A’ = for A, > ¢. This value ¢ is the singularity

threshold, a very small number that is typically proportional to the sum of the diagonal
elements of W (i.e., e< Y’ A)).

cvTrace
CvScalar cvlrace( const CvArr* mat );

Thetrace ofa matrix (Trace) isthe sum of all of the diagonal elements. The trace in OpenCV
is implemented on top of the cvGetDiag() function, so it does not require the array
passed in to be square. Multichannel arrays are supported, but the array mat should be
of floating-point type.

cvTranspose and cvT

void cvTranspose(
const CvArr* src,
CvArT* dst
);
cvTranspose() copies every element of src into the location in dst indicated by reversing
the row and column index. This function does support multichannel arrays; however,
if you are using multiple channels to represent complex numbers, remember that
cvTranspose() does not perform complex conjugation (a fast way to accomplish this task
is by means of the cvXorS() function, which can be used to directly flip the sign bits in
the imaginary part of the array). The macro cvT() is simply shorthand for cvTranspose().

cvXor and cvXorS

void cvXor(
const CvArr* srci,
const CVvArr* src2,
CvArr* dst,
const CvArr* mask=NULL
);
void cvXorS(
const CvArr* src,
CvScalar value,
CvArr* dst,
const CvArr* mask=NULL
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These two functions compute a bitwise XOR operation on the array srci. In the case of
cvXor(), each element of dst is computed as the bitwise XOR of the corresponding two
elements of src1 and src2. In the case of cvXorS(), the bitwise XOR is computed with the
constant scalar value. Once again, if mask is non-NULL then only the elements of dst cor-
responding to nonzero entries in mask are computed.

All data types are supported, but src1 and src2 must be of the same data type for cvXor().
For floating-point elements, the bitwise representation of that floating-point number
is used.

cvZero
void cvZero( CvArr* arr );

This function sets all values in all channels of the array to 0.

Drawing Things

Something that frequently occurs is the need to draw some kind of picture or to draw
something on top of an image obtained from somewhere else. Toward this end, OpenCV
provides a menagerie of functions that will allow us to make lines, squares, circles, and
the like.

Lines

The simplest of these routines just draws a line by the Bresenham algorithm
[Bresenham65]:
void cvlLine(

CvArr*  array,

CvPoint pti,

CvPoint pt2,

CvScalar color,

int thickness = 1,

int connectivity = 8

)
The first argument to cvLine() is the usual CvArr*, which in this context typically means
an IplImage* image pointer. The next two arguments are CvPoints. As a quick reminder,
CvPoint is a simple structure containing only the integer members x and y. We can cre-
ate a CvPoint “on the fly” with the routine cvPoint(int x, int y), which conveniently
packs the two integers into a CvPoint structure for us.

The next argument, color, is of type CvScalar. CvScalars are also structures, which (you
may recall) are defined as follows:

typdef struct {
double val[4];
} CvScalar;
As you can see, this structure is just a collection of four doubles. In this case, the first
three represent the red, green, and blue channels; the fourth is not used (it can be used
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for an alpha channel when appropriate). One typically makes use of the handy macro
CV_RGB(r, g, b). This macro takes three numbers and packs them up into a CvScalar.

The next two arguments are optional. The thickness is the thickness of the line (in pix-
els), and connectivity sets the anti-aliasing mode. The default is “8 connected”, which
will give a nice, smooth, anti-aliased line. You can also set this to a “4 connected” line;
diagonals will be blocky and chunky, but they will be drawn a lot faster.

At least as handy as cvLine() is cvRectangle(). It is probably unnecessary to tell you that
cvRectangle() draws a rectangle. It has the same arguments as cvLine() except that there
is no connectivity argument. This is because the resulting rectangles are always ori-
ented with their sides parallel to the x- and y-axes. With cvRectangle(), we simply give
two points for the opposite corners and OpenCV will draw a rectangle.
void cvRectangle(

CvArr*  array,

CvPoint pt1,

CvPoint pt2,

CvScalar color,
int thickness = 1

)

Circles and Ellipses

Similarly straightforward is the method for drawing circles, which pretty much has the
same arguments.
void cvCircle (

CvArr*  array,
CvPoint center,

int radius,

CvScalar color,

int thickness =1,
int connectivity = 8

)
For circles, rectangles, and all of the other closed shapes to come, the thickness argu-
ment can also be set to CV_FILL, which is just an alias for -1; the result is that the drawn
figure will be filled in the same color as the edges.

Only slightly more complicated than cvCircle() is the routine for drawing generalized
ellipses:
void cvEllipse(
CvArr*  img,
CvPoint center,
CvSize  axes,
double  angle,
double  start_angle,
double end angle,
CvScalar color,
int thickness = 1,
int line type = 8
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In this case, the major new ingredient is the axes argument, which is of type CvSize. The
function CvSize is very much like CvPoint and CvScalar; it is a simple structure, in this
case containing only the members width and height. Like CvPoint and CvScalar, there
is a convenient helper function cvSize(int height, int width) that will return a CvSize
structure when we need one. In this case, the height and width arguments represent the
length of the ellipse’s major and minor axes.

The angle is the angle (in degrees) of the major axis, which is measured counterclock-
wise from horizontal (i.e., from the x-axis). Similarly the start angle and end angle
indicate (also in degrees) the angle for the arc to start and for it to finish. Thus, for a
complete ellipse you must set these values to 0 and 360, respectively.

An alternate way to specify the drawing of an ellipse is to use a bounding box:

void cvEllipseBox(
CvArr*  img,
CvBox2D box,
CvScalar color,

int thickness = 1,
int line_type = 8,
int shift =0

);
Here again we see another of OpenCV’s helper structures, CvBox2D:

typdef struct {
CvPoint2D32f center;
CvSize2D32f size;
float angle;
} CvBox2D;

CvPoint2D32f is the floating-point analogue of CvPoint, and CvSize2D32f is the floating-

point analog of CvSize. These, along with the tilt angle, effectively specify the bounding
box for the ellipse.

Polygons

Finally, we have a set of functions for drawing polygons:
void cvFillPoly(
CvATT* img,
CvPoint** pts,

int* npts,

int contours,
CvScalar color,

int line type = 8

)

void cvFillConvexPoly(
CvArr*  img,
CvPoint* pts,

int npts,
CvScalar color,
int line type = 8
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)

void cvPolyLine(
CvATT* img,
CvPoint** pts,

int* npts,

int contours,

int is closed,
CvScalar color,

int thickness = 1,
int line_type = 8

);
All three of these are slight variants on the same idea, with the main difference being
how the points are specified.

In cvFillPoly(), the points are provided as an array of CvPoint structures. This allows
cvFillPoly() to draw many polygons in a single call. Similarly npts is an array of point
counts, one for each polygon to be drawn. If the is_closed variable is set to true, then
an additional segment will be drawn from the last to the first point for each polygon.
cvFillPoly() is quite robust and will handle self-intersecting polygons, polygons with
holes, and other such complexities. Unfortunately, this means the routine is compara-
tively slow.

cvFillConvexPoly() works like cvFillPoly() except that it draws only one polygon at a
time and can draw only convex polygons.* The upside is that cvFillConvexPoly() runs
much faster.

The third function, cvPolylLine(), takes the same arguments as cvFillPoly(); however,
since only the polygon edges are drawn, self-intersection presents no particular com-
plexity. Hence this function is much faster than cvFillPoly().

Fonts and Text

One last form of drawing that one may well need is to draw text. Of course, text creates
its own set of complexities, but—as always with this sort of thing—OpenCV is more
concerned with providing a simple “down and dirty” solution that will work for simple
cases than a robust, complex solution (which would be redundant anyway given the ca-
pabilities of other libraries).

OpenCV has one main routine, called cvPutText() that just throws some text onto an
image. The text indicated by text is printed with its lower-left corner of the text box at
origin and in the color indicated by color.

void cvPutText(

CvATT* img,
const char*  text,
CvPoint origin,

const CvFont* font,

* Strictly speaking, this is not quite true; it can actually draw and fill any monotone polygon, which is a
slightly larger class of polygons.
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CvScalar color
);
There is always some little thing that makes our job a bit more complicated than we’d
like, and in this case it’s the appearance of the pointer to CvFont.

In a nutshell, the way to get a valid CvFont* pointer is to call the function cvInitFont().
This function takes a group of arguments that configure some particular font for use on
the screen. Those of you familiar with GUI programming in other environments will
find cvInitFont() to be reminiscent of similar devices but with many fewer options.

In order to create a CvFont that we can pass to cvPutText(), we must first declare a CvFont
variable; then we can pass it to cvInitFont().
void cvInitFont(
CvFont* font,
int font face,
double hscale,
double wvscale,
double shear =
int thickness =
int line type
);
Observe that this is a little different than how seemingly similar functions, such as
cvCreateImage(), work in OpenCV. The call to cvInitFont() initializes an existing CvFont
structure (which means that you create the variable and pass cvInitFont() a pointer to
the variable you created). This is unlike cvCreateImage(), which creates the structure for
you and returns a pointer.

-

1
0 B O
-

The argument font_face is one of those listed in Table 3-15 (and pictured in Figure 3-6),
and it may optionally be combined (by Boolean OR) with CV_FONT_ITALIC.

Table 3-15. Available fonts (all are variations of Hershey)

Identifier Description

CV_FONT_HERSHEY_SIMPLEX
CV_FONT HERSHEY PLAIN
CV_FONT_HERSHEY_DUPLEX

CV_FONT_HERSHEY COMPLEX

CV_FONT_HERSHEY TRIPLEX

CV_FONT_HERSHEY COMPLEX_SMALL

CV_FONT_HERSHEY SCRIPT SIMPLEX
CV_FONT_HERSHEY SCRIPT COMPLEX

Normal size sanserif
Small size sanserif

Normal size sanserif, more complex than
CV_FONT_HERSHEY_ SIMPLEX

Normal size serif, more complex than
CV_FONT_HERSHEY DUPLEX

Normal size serif, more complex than
CV_FONT_HERSHEY_COMPLEX

Smaller version of
CV_FONT_HERSHEY_COMPLEX

Handwriting style

More complex variant of
CV_FONT_HERSHEY_SCRIPT SIMPLEX
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Figure 3-6. The eight fonts of Table 3-15 drawn with hscale = vscale = 1.0, with the origin of each
line separated from the vertical by 30 pixels

Both hscale and vscale can be set to either 1.0 or 0.5 only. This causes the font to be ren-
dered at full or half height (and width) relative to the basic definition of the particular
font.

The shear function creates an italicized slant to the font; if set to 0.0, the font is not
slanted. It can be set as large as 1.0, which sets the slope of the characters to approxi-
mately 45 degrees.

Both thickness and line type are the same as defined for all the other drawing
functions.

Data Persistence

OpenCV provides a mechanism for serializing and de-serializing its various data types
to and from disk in either YAML or XML format. In the chapter on HighGUI, which ad-
dresses user interface functions, we will cover specific functions that store and recall our
most common object: IplImages (these functions are cvSaveImage() and cvLoadImage()).
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In addition, the HighGUI chapter will discuss read and write functions specific to mov-
ies: cvGrabFrame(), which reads from file or from camera; and cvCreateVideoWriter()
and cviiriteFrame(). In this section, we will focus on general object persistence: reading
and writing matrices, OpenCV structures, and configuration and log files.

First we start with specific and convenient functions that save and load OpenCV ma-
trices. These functions are cvSave() and cvLoad(). Suppose you had a 5-by-5 identity
matrix (0 everywhere except for 1s on the diagonal). Example 3-15 shows how to ac-
complish this.

Example 3-15. Saving and loading a CvMat
CvMat A = cvMat( 5, 5, CV_32F, the matrix data );

cvSave( “my_matrix.xml”, 8A );

// to load it then in some other program use ..
CvMat* A1 = (CvMat*) cvload( “my matrix.xml” );

The CxCore reference manual contains an entire section on data persistence. What you
really need to know is that general data persistence in OpenCV consists of creating a
CvFileStorage structure, as in Example 3-16, that stores memory objects in a tree struc-
ture. You can create and fill this structure by reading from disk via cvOpenFileStorage()
with CV_STORAGE_READ, or you can create and open CvFileStorage via cvOpenFileStorage()
with CV_STORAGE_WRITE for writing and then fill it using the appropriate data persistence
functions. On disk, the data is stored in an XML or YAML format.

Example 3-16. CvFileStorage structure; data is accessed by CxCore data persistence functions

typedef struct CvFileStorage

{
// hidden fields
} CvFileStorage;

The internal data inside the CvFileStorage tree may consist of a hierarchical collection of
scalars, CxCore objects (matrices, sequences, and graphs) and/or user-defined objects.

Let’s say you have a configuration or logging file. For example, consider the case of a
movie configuration file that tells us how many frames we want (10), what their size is
(320 by 240) and a 3-by-3 color conversion matrix that should be applied. We want to
call the file “cfg.xml” on disk. Example 3-17 shows how to do this.

Example 3-17. Writing a configuration file “cfg.xml” to disk

CvFileStorage* fs = cvOpenFileStorage(
“cfg.xml”,
0,
CV_STORAGE_WRITE
);
cvhriteInt( fs, “frame_count”, 10 );
cvStartWriteStruct( fs, “frame_size”, CV_NODE_SEQ );
cviriteInt( fs, 0, 320 );
cviriteInt( fs, 0, 200 );
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Example 3-17. Writing a configuration file “cfg.xml” to disk (continued)

cvEndWriteStruct(fs);
cvirite( fs, “color cvt matrix”, cmatrix );
cvReleaseFileStorage( &fs );

Note some of the key functions in this example. We can give a name to integers that
we write to the structure using cviriteInt(). We can create an arbitrary structure, us-
ing cvStartWriteStruct(), which is also given an optional name (pass a 0 or NULL if
there is no name). This structure has two ints that have no name and so we pass a 0
for them in the name field, after which we use cvEndWriteStruct() to end the writing of
that structure. If there were more structures, we’d Start and End each of them similarly;
the structures may be nested to arbitrary depth. We then use cviWrite() to write out the
color conversion matrix. Contrast this fairly complex matrix write procedure with the
simpler cvSave() in Example 3-15. The cvSave() function is just a convenient shortcut
for cvirite() when you have only one matrix to write. When we are finished writing the
data, the CvFileStorage handle is released in cvReleaseFileStorage(). The output (here,
in XML form) would look like Example 3-18.

Example 3-18. XML version of cfg.xml on disk

<?xml version=“1.0"?>
<opencv_storage>
«frame_count>10</frame_count>
<frame_size>320 200</frame_size>
<color_cvt_matrix type_id=“opencv-matrix”>
<rows>3</rows> <cols>3</cols>
<dt>fe/dt>
<data».</data></color cvt matrix>
</opencv_storage>

We may then read this configuration file as shown in Example 3-19.

Example 3-19. Reading cfg.xml from disk

CvFileStorage* fs = cvOpenFileStorage(
“cfg.xml”,

0,

CV_STORAGE_READ

);

int frame_count = cvReadIntByName(
fs,

0,

“frame_count”,

5 /* default value */

);

CvSeq* s = cvGetFileNodeByName(fs,0,“frame_size”)->data.seq;

int frame width = cvReadInt(
(CvFileNode*)cvGetSeqElem(s,0)

)
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Example 3-19. Reading cfg.xml from disk (continued)

int frame_height = cvReadInt(
(CvFileNode*)cvGetSeqElem(s,1)

)

CvMat* color cvt matrix = (CvMat*) cvReadByName(
fs,
0,
“color_cvt_matrix”

)
cvReleaseFileStorage( &fs );

When reading, we open the XML configuration file with cvOpenFileStorage() as in Ex-
ample 3-19. We then read the frame_count using cvReadIntByName(), which allows for a
default value to be given if no number is read. In this case the default is 5. We then get
the structure that we named “frame_size” using cvGetFileNodeByName(). From here, we
read our two unnamed integers using cvReadInt(). Next we read our named color con-
version matrix using cvReadByName().* Again, contrast this with the short form cvLoad()
in Example 3-15. We can use cvLoad() if we only have one matrix to read, but we must
use cvRead() if the matrix is embedded within a larger structure. Finally, we release the
CvFileStorage structure.

The list of relevant data persistence functions associated with the CvFileStorage struc-
ture is shown in Table 3-16. See the CxCore manual for more details.

Table 3-16. Data persistence functions

Function Description

Open and Release

cvOpenFileStorage Opens file storage for reading or writing
cvReleaseFileStorage Releases data storage

Writing

cvStarthriteStruct Starts writing a new structure
cvEndWriteStruct Ends writing a structure

cviriteInt Writes integer

cviriteReal Writes float

cviriteString Writes text string

cviriteComment Writes an XML or YAML comment string
cviirite Writes an object such as a (vMat
cviWriteRawData Writes multiple numbers
cviriteFileNode Writes file node to another file storage

* One could also use cvRead() to read in the matrix, but it can only be called after the appropriate CvFile-
Node{} is located, e.g., using cvGetFileNodeByName().
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Table 3-16. Data persistence functions (continued)

Function Description

Reading

cvGetRootFileNode Gets the top-level nodes of the file storage
cvGetFileNodeByName Finds node in the map or file storage
cvGetHashedKey Returns a unique pointer for given name
cvGetFileNode Finds node in the map or file storage
cvGetFileNodeName Returns name of file node

cvReadInt Reads unnamed int

cvReadIntByName Reads named int

cvReadReal Reads unnamed float
cvReadRealByName Reads named float

cvReadString Retrieves text string from file node
cvReadStringByName Finds named file node and returns its value
cvRead Decodes object and returns pointer to it
cvReadByName Finds object and decodes it
cvReadRawData Reads multiple numbers
cvStartReadRawData Initializes file node sequence reader
cvReadRawDataSlice Reads data from sequence reader above

Integrated Performance Primitives

Intel has a product called the Integrated Performance Primitives (IPP) library (IPP).
This library is essentially a toolbox of high-performance kernels for handling multime-
dia and other processor-intensive operations in a manner that makes extensive use of
the detailed architecture of their processors (and, to a lesser degree, other manufactur-
ers’ processors that have a similar architecture).

As discussed in Chapter 1, OpenCV enjoys a close relationship with IPP, both at a soft-
ware level and at an organizational level inside of the company. As a result, OpenCV is
designed to automatically* recognize the presence of the IPP library and to automati-
cally “swap out” the lower-performance implementations of many core functionalities
for their higher-performance counterparts in IPP. The IPP library allows OpenCV to
take advantage of performance opportunities that arrive from SIMD instructions in a
single processor as well as from modern multicore architectures.

With these basics in hand, we can perform a wide variety of basic tasks. Moving on-
ward through the text, we will look at many more sophisticated capabilities of OpenCYV,

* The one prerequisite to this automatic recognition is that the binary directory of IPP must be in the system
path. So on a Windows system, for example, if you have IPP in C:/Program Files/Intel/IPP then you want to
ensure that C:/Program Files/Intel/IPP/bin is in your system path.
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almost all of which are built on these routines. It should be no surprise that image
processing—which often requires doing the same thing to a whole lot of data, much of
which is completely parallel—would realize a great benefit from any code that allows it
to take advantage of parallel execution units of any form (MMX, SSE, SSE2, etc.).

Verifying Installation

The way to check and make sure that IPP is installed and working correctly is with the
function cvGetModuleInfo(), shown in Example 3-20. This function will identify both
the version of OpenCV you are currently running and the version and identity of any
add-in modules.

Example 3-20. Using cvGetModulelnfo() to check for IPP

char* libraries;

char* modules;

cvGetModuleInfo( 0, &libraries, 8modules );
printf(“Libraries: %s/nModules: %s/n”, libraries, modules );

The code in Example 3-20 will generate text strings which describe the installed librar-
ies and modules. The output might look like this:

Libraries cxcore: 1.0.0

Modules: ippcv20.dll, ippi20.dll, ipps20.dll, ippvm20.d1l
The modules listed in this output are the IPP modules used by OpenCV. Those modules
are themselves actually proxies for even lower-level CPU-specific libraries. The details
of how it all works are well beyond the scope of this book, but if you see the IPP libraries
in the Modules string then you can be pretty confident that everything is working as ex-
pected. Of course, you could use this information to verify that IPP is running correctly
on your own system. You might also use it to check for IPP on a machine on which your
finished software is installed, perhaps then making some dynamic adjustments depend-
ing on whether IPP is available.

Summary

In this chapter we introduced some basic data structures that we will often encounter.
In particular, we met the OpenCV matrix structure and the all-important OpenCV im-
age structure, IplImage. We considered both in some detail and found that the matrix
and image structures are very similar: the functions used for primitive manipulations
in one work equally well in the other.

Exercises

In the following exercises, you may need to refer to the CxCore manual that ships with
OpenCV or to the OpenCV Wiki on the Web for details of the functions outlined in
this chapter.

1. Find and open .../opencv/cxcore/include/cxtypes.h. Read through and find the many
conversion helper functions.
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a. Choose a negative floating-point number. Take its absolute value, round it, and
then take its ceiling and floor.

b. Generate some random numbers.
c. Create a floating point CvPoint2D32f and convert it to an integer CvPoint.

d. Convert a CvPoint to a CvPoint2D32f.

. This exercise will accustom you to the idea of many functions taking matrix types.

Create a two-dimensional matrix with three channels of type byte with data size
100-by-100. Set all the values to 0.

a. Draw a circle in the matrix using void cvCircle( CvArr* img, CvPoint center,
intradius, CvScalar color, int thickness=1, int line type=8, int shift=0).

b. Display this image using methods described in Chapter 2.

. Create a two-dimensional matrix with three channels of type byte with data

size 100-by-100, and set all the values to 0. Use the pointer element access function
cvPtr2D to point to the middle (“green”) channel. Draw a green rectangle between
(20, 5) and (40, 20).

Create a three-channel RGB image of size 100-by-100. Clear it. Use pointer arith-
metic to draw a green square between (20, 5) and (40, 20).

Practice using region of interest (ROI). Create a 210-by-210 single-channel byte im-
age and zero it. Within the image, build a pyramid of increasing values using ROI
and cvSet(). That is: the outer border should be 0, the next inner border should be
20, the next inner border should be 40, and so on until the final innermost square is
set to value 200; all borders should be 10 pixels wide. Display the image.

Use multiple image headers for one image. Load an image that is at least 100-by-100.
Create two additional image headers and set their origin, depth, number of chan-
nels, and widthstep to be the same as the loaded image. In the new image headers,
set the width at 20 and the height at 30. Finally, set their imageData pointers to point
to the pixel at (5, 10) and (50, 60), respectively. Pass these new image subheaders
to cvNot(). Display the loaded image, which should have two inverted rectangles
within the larger image.

Create a mask using cvCmp(). Load a real image. Use cvSplit() to split the image
into red, green, and blue images.

a. Find and display the green image.

b. Clone this green plane image twice (call these clonel and clone2).

c. Find the green plane’s minimum and maximum value.

d. Set clonel’s values to thresh = (unsigned char)((maximum - minimum)/2.0).

e. Set clone2 to 0 and use cvCmp(green image, clonel, clone2, CV CMP GE). Now
clone2 will have a mask of where the value exceeds thresh in the green image.
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t. Finally, use cvSubS(green_image,thresh/2, green_image, clone2) and display the

results.

8. Create a structure of an integer, a CvPoint and a CvRect; call it “my_struct”.

a.

Write two functions: void write my struct( CvFileStorage * fs, const char *
name, my_struct *ms) and void read my struct( CvFileStorage* fs, CvFileNode*
ms_node, my_struct*ms ). Use them to write and read my_struct.

Write and read an array of 10 my_struct structures.
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CHAPTER 4

HighGUI

A Portable Graphics Toolkit

The OpenCV functions that allow us to interact with the operating system, the file sys-
tem, and hardware such as cameras are collected into a library called HighGUT (which
stands for “high-level graphical user interface”). HighGUT allows us to open windows,
to display images, to read and write graphics-related files (both images and video), and
to handle simple mouse, pointer, and keyboard events. We can also use it to create other
useful doodads like sliders and then add them to our windows. If you are a GUI guru in
your window environment of choice, then you might find that much of what HighGUI
offers is redundant. Yet even so you might find that the benefit of cross-platform porta-
bility is itself a tempting morsel.

From our initial perspective, the HighGUI library in OpenCV can be divided into three
parts: the hardware part, the file system part, and the GUI part.* We will take a moment
to overview what is in each part before we really dive in.

The hardware part is primarily concerned with the operation of cameras. In most oper-
ating systems, interaction with a camera is a tedious and painful task. HighGUT allows
an easy way to query a camera and retrieve the latest image from the camera. It hides all
of the nasty stuff, and that keeps us happy.

The file system part is concerned primarily with loading and saving images. One nice
feature of the library is that it allows us to read video using the same methods we would
use to read a camera. We can therefore abstract ourselves away from the particular de-
vice we're using and get on with writing interesting code. In a similar spirit, HighGUI
provides us with a (relatively) universal pair of functions to load and save still images.
These functions simply rely on the filename extension and automatically handle all of
the decoding or encoding that is necessary.

* Under the hood, the architectural organization is a bit different from what we described, but the breakdown
into hardware, file system, and GUI is an easier way to organize things conceptually. The actual HighGUI
functions are divided into “video I0”, “image I0”, and “GUI tools”. These categories are represented by the
cveap*, grfmt*, and window* source files, respectively.
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The third part of HighGUI is the window system (or GUI). The library provides some
simple functions that will allow us to open a window and throw an image into that
window. It also allows us to register and respond to mouse and keyboard events on that
window. These features are most useful when trying to get off of the ground with a sim-
ple application. Tossing in some slider bars, which we can also use as switches,* we find
ourselves able to prototype a surprising variety of applications using only the HighGUI
library.

As we proceed in this chapter, we will not treat these three segments separately; rather,
we will start with some functions of highest immediate utility and work our way to the
subtler points thereafter. In this way you will learn what you need to get going as soon
as possible.

Creating a Window

First, we want to show an image on the screen using HighGUI. The function that does
this for us is cvNamedWindow(). The function expects a name for the new window and one
flag. The name appears at the top of the window, and the name is also used as a handle
for the window that can be passed to other HighGUT functions. The flag indicates if the
window should autosize itself to fit an image we put into it. Here is the full prototype:

int cvNamedWindow(
const char* name,
int flags = CV_WINDOW_AUTOSIZE
);
Notice the parameter flags. For now, the only valid options available are to set flags
to 0 or to use the default setting, CVv_ WINDOW_AUTOSIZE. If CV_WINDOW_AUTOSIZE is set, then
HighGUI resizes the window to fit the image. Thereafter, the window will automatically
resize itself if a new image is loaded into the window but cannot be resized by the user.
If you don’t want autosizing, you can set this argument to 0; then users can resize the
window as they wish.

Once we create a window, we usually want to put something into it. But before we do
that, let’s see how to get rid of the window when it is no longer needed. For this we use
cvDestroyWindow(), a function whose argument is a string: the name given to the win-
dow when it was created. In OpenCV, windows are referenced by name instead of by
some unfriendly (and invariably OS-dependent) “handle”. Conversion between handles
and names happens under the hood of HighGUI, so you needn’t worry about it.

Having said that, some people do worry about it, and that’s OK, too. For those people,
HighGUI provides the following functions:

void* cvGetWindowHandle( const char* name );
const char* cvGetWindowName( void* window_handle );

* OpenCV HighGUI does not provide anything like a button. The common trick is to use a two-position
slider to achieve this functionality (more on this later).
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These functions allow us to convert back and forth between the human-readable names
preferred by OpenCV and the “handle” style of reference used by different window
systems.*

To resize a window, call (not surprisingly) cvResizeWindow():

void cvResizeWindow(
const char* name,
int width,
int height
);
Here the width and height are in pixels and give the size of the drawable part of the win-
dow (which are probably the dimensions you actually care about).

Loading an Image

Before we can display an image in our window, we’ll need to know how to load an image
from disk. The function for this is cvLoadImage():
IplImage* cvLoadImage(
const char* filename,
int iscolor = CV_LOAD IMAGE_COLOR
);

When opening an image, cvLoadImage() does not look at the file extension. Instead,
cvLoadImage() analyzes the first few bytes of the file (aka its signature or “magic sequence”)
and determines the appropriate codec using that. The second argument iscolor can be
set to one of several values. By default, images are loaded as three-channel images with
8 bits per channel; the optional flag CV_LOAD IMAGE_ANYDEPTH can be added to allow load-
ing of non-8-bit images. By default, the number of channels will be three because the
iscolor flag has the default value of CV_LOAD IMAGE COLOR. This means that, regardless
of the number of channels in the image file, the image will be converted to three chan-
nels if needed. The alternatives to CV_LOAD_IMAGE COLOR are CV_LOAD IMAGE GRAYSCALE and
CV_LOAD IMAGE_ANYCOLOR.JustasCV_LOAD IMAGE COLOR forcesanyimageintoathree-channel
image, CV_LOAD_IMAGE_GRAYSCALE automatically converts any image into a single-channel
image. CV_LOAD_IMAGE_ANYCOLOR will simply load the image as it is stored in the file. Thus, to
load a 16-bit color image you would use CV_LOAD_IMAGE COLOR | CV_LOAD IMAGE_ANYDEPTH.
If you want both the color and depth to be loaded exactly “as is”, you could instead use
the all-purpose flag CV_LOAD_IMAGE_UNCHANGED. Note that cvLoadImage() does not signal a
runtime error when it fails to load an image; it simply returns a null pointer.

The obvious complementary function to cvLoadImage() is cvSaveImage(), which takes
two arguments:
int cvSaveImage(
const char* filename,
const CvArr* image

)

* For those who know what this means: the window handle returned is a HIND on Win32 systems, a Carbon
WindowRef on Mac OS X, and a Widget* pointer on systems (e.g., GtkWidget) of X Window type.
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The first argument gives the filename, whose extension is used to determine the format
in which the file will be stored. The second argument is the name of the image to be
stored. Recall that CvArr is kind of a C-style way of creating something equivalent to
a base-class in an object-oriented language; wherever you see CvArr*, you can use an
IplImage*. The cvSaveImage() function will store only 8-bit single- or three-channel im-
ages for most file formats. Newer back ends for flexible image formats like PNG, TIFF
or JPEG2000 allow storing 16-bit or even float formats and some allow four-channel
images (BGR plus alpha) as well. The return value will be 1 if the save was successful and
should be 0 if the save was not.*

Displaying Images

Now we are ready for what we really want to do, and that is to load an image and to put
it into the window where we can view it and appreciate its profundity. We do this via
one simple function, cvShowImage():
void cvShowImage(
const char* name,
const CvArr* image
);
The first argument here is the name of the window within which we intend to draw. The
second argument is the image to be drawn.

Let’s now put together a simple program that will display an image on the screen. We can
read a filename from the command line, create a window, and put our image in the win-
dow in 25 lines, including comments and tidily cleaning up our memory allocations!

int main(int argc, char** argv)

{

// Create a named window with the name of the file.
cvNamedWindow( argv[1i], 1 );

// Load the image from the given file name.
IplImage* img = cvloadImage( argv[i] );

// Show the image in the named window
cvShowImage( argv([1], img );

// Idle until the user hits the “Esc” key.
while( 1) {

if( cviWaitKey( 100 ) == 27 ) break;
}

// Clean up and don’t be piggies
cvDestroyWindow( argv[1] );
cvReleaseImage( &img );

* The reason we say “should” is that, in some OS environments, it is possible to issue save commands that
will actually cause the operating system to throw an exception. Normally, however, a zero value will be
returned to indicate failure.
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exit(0);
}
For convenience we have used the filename as the window name. This is nice because
OpenCV automatically puts the window name at the top of the window, so we can tell
which file we are viewing (see Figure 4-1). Easy as cake.

—1. Motorcycle.jpg [;]E

Figure 4-1. A simple image displayed with cvShowImage()

Before we move on, there are a few other window-related functions you ought to know
about. They are:

void cvMoveWindow( const char* name, int x, int y );
void cvDestroyAllWindows( void );
int cvStartWindowThread( void );
cvMoveWindow() simply moves a window on the screen so that its upper left corner is

positioned at x,y.

cvDestroyAllWindows() is a useful cleanup function that closes all of the windows and
de-allocates the associated memory.

On Linux and MacOS, cvStartWindowThread() tries to start a thread that updates the
window automatically and handles resizing and so forth. A return value of 0 indicates
that no thread could be started—for example, because there is no support for this feature
in the version of OpenCV that you are using. Note that, if you do not start a separate win-
dow thread, OpenCV can react to user interface actions only when it is explicitly given
time to do so (this happens when your program invokes cviaitKey(), as described next).
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WaitKey

Observe that inside the while loop in our window creation example there is a new func-
tion we have not seen before: cviWaitKey(). This function causes OpenCV to wait for a
specified number of milliseconds for a user keystroke. If the key is pressed within the
allotted time, the function returns the key pressed;* otherwise, it returns 0. With the
construction:

while( 1) {

if( cvWaitKey(100)==27 ) break;

}
we tell OpenCV to wait 100 ms for a key stroke. If there is no keystroke, then repeat ad
infinitum. If there is a keystroke and it happens to have ASCII value 27 (the Escape key),
then break out of that loop. This allows our user to leisurely peruse the image before
ultimately exiting the program by hitting Escape.

As long as were introducing cviWaitKey(), it is worth mentioning that cviWaitKey() can
also be called with 0 as an argument. In this case, cviWaitKey() will wait indefinitely until
a keystroke is received and then return that key. Thus, in our example we could just as
easily have used cviaitKey(0). The difference between these two options would be more
apparent if we were displaying a video, in which case we would want to take an action
(i.e., display the next frame) if the user supplied no keystroke.

Mouse Events

Now that we can display an image to a user, we might also want to allow the user to in-
teract with the image we have created. Since we are working in a window environment
and since we already learned how to capture single keystrokes with cviaitKey(), the next
logical thing to consider is how to “listen to” and respond to mouse events.

Unlike keyboard events, mouse events are handled by a more typical callback mecha-
nism. This means that, to enable response to mouse clicks, we must first write a callback
routine that OpenCV can call whenever a mouse event occurs. Once we have done that,
we must register the callback with OpenCV, thereby informing OpenCV that this is the
correct function to use whenever the user does something with the mouse over a par-
ticular window.

Let’s start with the callback. For those of you who are a little rusty on your event-driven
program lingo, the callback can be any function that takes the correct set of arguments
and returns the correct type. Here, we must be able to tell the function to be used as a

* The careful reader might legitimately ask exactly what this means. The short answer is “an ASCII value”, but
the long answer depends on the operating system. In Win32 environments, cviWaitKey() is actually waiting
for a message of type WM_CHAR and, after receiving that message, returns the wParam field from the message
(wParam is not actually type char at all!). On Unix-like systems, cvWaitKey() is using GTK; the return value
is (event->keyval | (event->state<<16)), where event is a GdkEventKey structure. Again, this is not
really a char. That state information is essentially the state of the Shift, Control, etc. keys at the time of the
key press. This means that, if you are expecting (say) a capital Q, then you should either cast the return of
cviaitKey() to type char or AND with 0xff, because the shift key will appear in the upper bits (e.g., Shift-
Q will return 0x10051).
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callback exactly what kind of event occurred and where it occurred. The function must
also be told if the user was pressing such keys as Shift or Alt when the mouse event oc-
curred. Here is the exact prototype that your callback function must match:

void CvMouseCallback(
int  event,

int  x,
int vy,
int  flags,

void* param
);
Now, whenever your function is called, OpenCV will fill in the arguments with their ap-
propriate values. The first argument, called the event, will have one of the values shown
in Table 4-1.
Table 4-1. Mouse event types
Event Numerical value
CV_EVENT_MOUSEMOVE 0
CV_EVENT_LBUTTONDOWN
CV_EVENT_RBUTTONDOWN
CV_EVENT MBUTTONDOWN
CV_EVENT_LBUTTONUP
CV_EVENT RBUTTONUP
CV_EVENT_MBUTTONUP
CV_EVENT_LBUTTONDBLCLK
CV_EVENT_RBUTTONDBLCLK
CV_EVENT_MBUTTONDBLCLK

—_

O 0 N o U BB W N

The second and third arguments will be set to the x and y coordinates of the mouse
event. It is worth noting that these coordinates represent the pixel in the image indepen-
dent of the size of the window (in general, this is not the same as the pixel coordinates
of the event).

The fourth argument, called flags, is a bit field in which individual bits indicate special
conditions present at the time of the event. For example, CV_EVENT FLAG SHIFTKEY has a
numerical value of 16 (i.e., the fifth bit) and so, if we wanted to test whether the shift key
were down, we could AND the flags variable with the bit mask (1<<4). Table 4-2 shows a
complete list of the flags.

Table 4-2. Mouse event flags

Flag Numerical value
CV_EVENT FLAG_LBUTTON 1
CV_EVENT FLAG_RBUTTON 2
CV_EVENT FLAG_MBUTTON 4
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Table 4-2. Mouse event flags (continued)

Flag Numerical value
CV_EVENT_FLAG_CTRLKEY 8
CV_EVENT_FLAG_SHIFTKEY 16
CV_EVENT_FLAG_ALTKEY 32

The final argument is a void pointer that can be used to have OpenCV pass in any ad-
ditional information in the form of a pointer to whatever kind of structure you need.
A common situation in which you will want to use the param argument is when the
callback itself is a static member function of a class. In this case, you will probably find
yourself wanting to pass the this pointer and so indicate which class object instance the
callback is intended to affect.

Next we need the function that registers the callback. That function is called
cvSetMouseCallback(), and it requires three arguments.

void cvSetMouseCallback(

const char* window_name,
CvMouseCallback on_mouse,
void* param = NULL

);
The first argument is the name of the window to which the callback will be attached.
Only events in that particular window will trigger this specific callback. The second ar-
gument is your callback function. Finally, the third param argument allows us to specify
the param information that should be given to the callback whenever it is executed. This
is, of course, the same param we were just discussing in regard to the callback prototype.

In Example 4-1 we write a small program to draw boxes on the screen with the mouse.
The function my mouse callback() is installed to respond to mouse events, and it uses
the event to determine what to do when it is called.

Example 4-1. Toy program for using a mouse to draw boxes on the screen

// An example program in which the
// user can draw boxes on the screen.
//

#include <cv.h>

#include <highgui.h>

// Define our callback which we will install for
// mouse events.
//
void my_mouse_callback(
int event, int x, int y, int flags, void* param

)

CvRect box;
bool drawing box = false;

// A litte subroutine to draw a box onto an image
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Example 4-1. Toy program for using a mouse to draw boxes on the screen (continued)

I
void draw box( IplImage* img, CvRect rect ) {
cvRectangle (
img,
cvPoint(box.x,box.y),
cvPoint(box.x+box.width,box.y+box.height),
cvScalar(oxff,0x00,0x00) /* red */
);
}

int main( int argc, char* argv[] ) {
box = cvRect(-1,-1,0,0);

IplImage* image = cvCreateImage(
cvSize(200,200),
IPL_DEPTH_8U,
3

);

cvZero( image );

IplImage* temp = cvCloneImage( image );

cvNamedWindow( “Box Example” );

// Here is the crucial moment that we actually install
// the callback. Note that we set the value ‘param’ to
// be the image we are working with so that the callback
// will have the image to edit.

//

cvSetMouseCallback(

“Box Example”,

my mouse_callback,

(void*) image

);

// The main program loop. Here we copy the working image
// to the ‘temp’ image, and if the user is drawing, then

// put the currently contemplated box onto that temp image.
// display the temp image, and wait 15ms for a keystroke,
// then repeat..

/

while( 1) {

cvCopyImage( image, temp );
if( drawing box ) draw_box( temp, box );
cvShowImage( “Box Example”, temp );

if( cvWaitKey( 15 )==27 ) break;
}

// Be tidy
/

cvReleaseImage( &image );
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Example 4-1. Toy program for using a mouse to draw boxes on the screen (continued)

cvReleaseImage( &temp );
cvDestroyWindow( “Box Example” );

}

// This is our mouse callback. If the user
// presses the left button, we start a box.
// when the user releases that button, then we
// add the box to the current image. When the
// mouse is dragged (with the button down) we
// resize the box.
//
void my mouse callback(
int event, int x, int y, int flags, void* param

) 1
IplImage* image = (IplImage*) param;

switch( event ) {
case CV_EVENT_MOUSEMOVE: {
if( drawing box ) {
box.width = x-box.x;
box.height = y-box.y;
}
}
break;
case CV_EVENT_LBUTTONDOWN: {
drawing box = true;
box = cvRect(x, y, 0, 0);
}
break;
case CV_EVENT LBUTTONUP: {
drawing box = false;
if(box.width<o) {
box.x+=box.width;
box.width *=-1;

if(box.height<0) {
box.y+=box.height;
box.height*=-1;
}
draw_box(image, box);
}
break;
}
}

Sliders, Trackbars, and Switches

HighGUI provides a convenient slider element. In HighGUI, sliders are called trackbars.
This is because their original (historical) intent was for selecting a particular frame
in the playback of a video. Of course, once added to HighGUI, people began to use
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trackbars for all of the usual things one might do with a slider as well as many unusual
ones (see the next section, “No Buttons”)!

As with the parent window, the slider is given a unique name (in the form of a character
string) and is thereafter always referred to by that name. The HighGUI routine for cre-
ating a trackbar is:

int cvCreateTrackbar(

const char* trackbar name,
const char* window_name,
int* value,

int count,

CvTrackbarCallback on change
);
The first two arguments are the name for the trackbar itself and the name of the parent
window to which the trackbar will be attached. When the trackbar is created it is added
to either the top or the bottom of the parent window;* it will not occlude any image that
is already in the window.

The next two arguments are value, a pointer to an integer that will be set automatically
to the value to which the slider has been moved, and count, a numerical value for the
maximum value of the slider.

The last argument is a pointer to a callback function that will be automatically called

whenever the slider is moved. This is exactly analogous to the callback for mouse events. If

used, the callback function must have the form CvTrackbarCallback, which is defined as:
void (*callback)( int position )

This callback is not actually required, so if you don’t want a callback then you can sim-

ply set this value to NULL. Without a callback, the only effect of the user moving the slider

will be the value of *value being changed.

Finally, here are two more routines that will allow you to programmatically set or read
the value of a trackbar if you know its name:
int cvGetTrackbarPos(

const char* trackbar_name,
const char* window_name

)

void cvSetTrackbarPos(
const char* trackbar name,
const char* window_name,
int pos
);
These functions allow you to set or read the value of a trackbar from anywhere in your
program.

* Whether it is added to the top or bottom depends on the operating system, but it will always appear in the
same place on any given platform.
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No Buttons

Unfortunately, HighGUI does not provide any explicit support for buttons. It is thus
common practice, among the particularly lazy,* to instead use sliders with only two
positions. Another option that occurs often in the OpenCV samples in .../opencv/
samples/c/ is to use keyboard shortcuts instead of buttons (see, e.g., the floodfill demo in
the OpenCV source-code bundle).

Switches are just sliders (trackbars) that have only two positions, “on” (1) and “off” (0)
(i.e., count has been set to 1). You can see how this is an easy way to obtain the func-
tionality of a button using only the available trackbar tools. Depending on exactly how
you want the switch to behave, you can use the trackbar callback to automatically reset
the button back to 0 (as in Example 4-2; this is something like the standard behavior of
most GUI “buttons”) or to automatically set other switches to 0 (which gives the effect
of a “radio button”).

Example 4-2. Using a trackbar to create a “switch” that the user can turn on and off

// We make this value global so everyone can see it.

/

int g_switch value = 0;

// This will be the callback that we give to the
// trackbar.
//
void switch callback( int position ) {
if( position == 0 ) {
switch off function();
} else {
switch_on function();
}
}

int main( int argc, char* argv[] ) {

// Name the main window
//

cvNamedWindow( “Demo Window”, 1 );

// Create the trackbar. We give it a name,
// and tell it the name of the parent window.
//
cvCreateTrackbar(
“Switch”,
“Demo Window”,
&g_switch value,
1,

* For the less lazy, another common practice is to compose the image you are displaying with a “control
panel” you have drawn and then use the mouse event callback to test for the mouse’s location when the
event occurs. When the (x, y) location is within the area of a button you have drawn on your control panel,
the callback is set to perform the button action. In this way, all “buttons” are internal to the mouse event
callback routine associated with the parent window.
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Example 4-2. Using a trackbar to create a “switch” that the user can turn on and off (continued)

Switch_callback
);

// This will just cause OpenCV to idle until
// someone hits the “Escape” key.

//
while( 1) {

if( cvWaitKey(15)==27 ) break;
}

}

You can see that this will turn on and off just like a light switch. In our example,
whenever the trackbar “switch” is set to 0, the callback executes the function switch off_
function(), and whenever it is switched on, the switch on function() is called.

Working with Video

When working with video we must consider several functions, including (of course)
how to read and write video files. We must also think about how to actually play back
such files on the screen.

The first thing we need is the CvCapture device. This structure contains the information
needed for reading frames from a camera or video file. Depending on the source, we use
one of two different calls to create and initialize a CvCapture structure.

CvCapture* cvCreateFileCapture( const char* filename );
CvCapture* cvCreateCameraCapture( int index );

In the case of cvCreateFileCapture(), we can simply give a filename for an MPG or AVI
file and OpenCV will open the file and prepare to read it. If the open is successful and
we are able to start reading frames, a pointer to an initialized CvCapture structure will
be returned.

A lot of people don’t always check these sorts of things, thinking that nothing will go
wrong. Don’t do that here. The returned pointer will be NULL if for some reason the file
could not be opened (e.g., if the file does not exist), but cvCreateFileCapture() will also
return a NULL pointer if the codec with which the video is compressed is not known.
The subtleties of compression codecs are beyond the scope of this book, but in general
you will need to have the appropriate library already resident on your computer in or-
der to successfully read the video file. For example, if you want to read a file encoded
with DIVX or MPG4 compression on a Windows machine, there are specific DLLs that
provide the necessary resources to decode the video. This is why it is always important
to check the return value of cvCreateFileCapture(), because even if it works on one ma-
chine (where the needed DLL is available) it might not work on another machine (where
that codec DLL is missing). Once we have the CvCapture structure, we can begin reading
frames and do a number of other things. But before we get into that, let’s take a look at
how to capture images from a camera.
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The routine cvCreateCameraCapture() works very much like cvCreateFileCapture() ex-
cept without the headache from the codecs.* In this case we give an identifier that indi-
cates which camera we would like to access and how we expect the operating system to
talk to that camera. For the former, this is just an identification number that is zero (0)
when we only have one camera, and increments upward when there are multiple cam-
eras on the same system. The other part of the identifier is called the domain of the
camera and indicates (in essence) what type of camera we have. The domain can be any
of the predefined constants shown in Table 4-3.

Table 4-3. Camera “domain” indicates where HighGUI
should look for your camera

Camera capture constant Numerical value
CV_CAP_ANY 0
CV_CAP MIL 100
CV_CAP VFW 200
CV_CAP V4L 200
CV_CAP V412 200
CV_CAP_FIREWIRE 300
CV_CAP TEEE1394 300
CV_CAP DC1394 300
CV_CAP_CMU1394 300

When we call cvCreateCameraCapture(), we pass in an identifier that is just the sum of
the domain index and the camera index. For example:
CvCapture* capture = cvCreateCameraCapture( CV_CAP FIREWIRE );

In this example, cvCreateCameraCapture() will attempt to open the first (i.e., number-
zero) Firewire camera. In most cases, the domain is unnecessary when we have only one
camera; it is sufficient to use CV_CAP_ANY (which is conveniently equal to 0, so we don’t
even have to type that in). One last useful hint before we move on: you can pass -1 to
cvCreateCameraCapture(), which will cause OpenCV to open a window that allows you
to select the desired camera.

Reading Video

int cvGrabFrame( CvCapture* capture );

IplImage* cvRetrieveFrame( CvCapture* capture );

IplImage* cvQueryFrame( CvCapture* capture );
Once you have a valid CvCapture object, you can start grabbing frames. There are two
ways to do this. One way is to call cvGrabFrame(), which takes the CvCapture* pointer
and returns an integer. This integer will be 1 if the grab was successful and 0 if the grab

* Of course, to be completely fair, we should probably confess that the headache caused by different codecs
has been replaced by the analogous headache of determining which cameras are (or are not) supported on
our system.
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failed. The cvGrabFrame() function copies the captured image to an internal buffer that
is invisible to the user. Why would you want OpenCV to put the frame somewhere you
can’t access it? The answer is that this grabbed frame is unprocessed, and cvGrabFrame()
is designed simply to get it onto the computer as quickly as possible.

Once you have called cvGrabFrame(), you can then call cvRetrieveFrame(). This func-
tion will do any necessary processing on the frame (such as the decompression stage in
the codec) and then return an IplImage* pointer that points to another internal buffer
(so do not rely on this image, because it will be overwritten the next time you call
cvGrabFrame()). If you want to do anything in particular with this image, copy it else-
where first. Because this pointer points to a structure maintained by OpenCV itself, you
are not required to release the image and can expect trouble if you do so.

Having said all that, there is a somewhat simpler method called cvQueryFrame(). This
is, in effect, a combination of cvGrabFrame() and cvRetrieveFrame(); it also returns the
same IplImage* pointer as cvRetrieveFrame() did.

It should be noted that, with a video file, the frame is automatically advanced when-
ever a cvGrabFrame() call is made. Hence a subsequent call will retrieve the next frame
automatically.

Once you are done with the CvCapture device, you can release it with a call to
cvReleaseCapture(). As with most other de-allocators in OpenCV, this routine takes a
pointer to the CvCapture* pointer:

void cvReleaseCapture( CvCapture** capture );

There are many other things we can do with the CvCapture structure. In particular, we

can check and set various properties of the video source:

double cvGetCaptureProperty(
CvCapture* capture,
int property id

);

int cvSetCaptureProperty(
CvCapture* capture,
int property_id,
double value
);
The routine cvGetCaptureProperty() accepts any of the property IDs shown in Table 4-4.

Table 4-4. Video capture properties used by cvGetCaptureProperty()
and cvSetCaptureProperty()

Video capture property Numerical value
CV_CAP_PROP_P0S_MSEC 0
CV_CAP_PROP_POS_FRAME
CV_CAP_PROP_POS_AVI RATIO
CV_CAP_PROP_FRAME_WIDTH
CV_CAP_PROP_FRAME HEIGHT

—_
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Table 4-4. Video capture properties used by cvGetCaptureProperty()
and cvSetCaptureProperty() (continued)

Video capture property Numerical value
CV_CAP_PROP FPS 5
CV_CAP_PROP_FOURCC 6
CV_CAP_PROP_FRAME_COUNT 7

Most of these properties are self explanatory. POS_MSEC is the current position in a video
file, measured in milliseconds. POS_FRAME is the current position in frame number. POS_
AVI_RATIO is the position given as a number between 0 and 1 (this is actually quite use-
ful when you want to position a trackbar to allow folks to navigate around your video).
FRAME_WIDTH and FRAME HEICHT are the dimensions of the individual frames of the video
to be read (or to be captured at the camera’s current settings). FPS is specific to video files
and indicates the number of frames per second at which the video was captured; you
will need to know this if you want to play back your video and have it come out at the
right speed. FOURCC is the four-character code for the compression codec to be used for
the video you are currently reading. FRAME_COUNT should be the total number of frames
in the video, but this figure is not entirely reliable.

All of these values are returned as type double, which is perfectly reasonable except for
the case of FOURCC (FourCC) [FourCC85]. Here you will have to recast the result in order
to interpret it, as described in Example 4-3.

Example 4-3. Unpacking a four-character code to identify a video codec

double f = cvGetCaptureProperty(
capture,
CV_CAP_PROP_FOURCC

)
char* fourcc = (char*) (&f);

For each of these video capture properties, there is a corresponding cvSetCapture
Property() function that will attempt to set the property. These are not all entirely mean-
ingful; for example, you should not be setting the FOURCC of a video you are currently
reading. Attempting to move around the video by setting one of the position properties
will work, but only for some video codecs (we’ll have more to say about video codecs in
the next section).

Writing Video

The other thing we might want to do with video is writing it out to disk. OpenCV makes
this easy; it is essentially the same as reading video but with a few extra details.

First we must create a CvVideoWriter device, which is the video writing analogue of
CvCapture. This device will incorporate the following functions.

CvVideoWriter* cvCreateVideoWriter(
const char* filename,
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int fourcc,

double fps,
CvSize frame size,
int is color =1

);

int cvWriteFrame(
CvVideoWriter* writer,
const IplImage* image

);

void cvReleaseVideoWriter(
CvVideoWriter** writer

);
You will notice that the video writer requires a few extra arguments. In addition to the
filename, we have to tell the writer what codec to use, what the frame rate is, and how
big the frames will be. Optionally we can tell OpenCV if the frames are black and white
or color (the default is color).

Here, the codec is indicated by its four-character code. (For those of you who are not
experts in compression codecs, they all have a unique four-character identifier asso-
ciated with them). In this case the int that is named fourcc in the argument list for
cvCreateVideoWriter() is actually the four characters of the fourcc packed to-
gether. Since this comes up relatively often, OpenCV provides a convenient macro
CV_FOURCC(cO,c1,c2,c3) that will do the bit packing for you.

Once you have a video writer, all you have to do is call cviriteFrame() and pass in the
CvVideoWriter* pointer and the IplImage* pointer for the image you want to write out.

Once you are finished, you must call CvReleaseVideoWriter() in order to close the writer
and the file you were writing to. Even if you are normally a bit sloppy about de-allocating
things at the end of a program, do not be sloppy about this. Unless you explicitly release
the video writer, the video file to which you are writing may be corrupted.

Convertimage

For purely historical reasons, there is one orphan routine in the HighGUI that fits into
none of the categories described above. It is so tremendously useful, however, that you
should know about it and what it does. The function is called cvConvertImage().

void cvConvertImage(
const CvArr* src,
CvArr* dst,
int flags = 0
);
cvConvertImage() is used to perform common conversions between image formats. The
formats are specified in the headers of the src and dst images or arrays (the function
prototype allows the more general CvArr type that works with IplImage).

The source image may be one, three, or four channels with either 8-bit or floating-point
pixels. The destination must be 8 bits with one or three channels. This function can also
convert color to grayscale or one-channel grayscale to three-channel grayscale (color).
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Finally, the flag (if set) will flip the image vertically. This is useful because sometimes
camera formats and display formats are reversed. Setting this flag actually flips the pix-
els in memory.

Exercises

1. This chapter completes our introduction to basic I/O programming and data struc-
tures in OpenCV. The following exercises build on this knowledge and create useful
utilities for later use.

a. Create a program that (1) reads frames from a video, (2) turns the result to gray-
scale, and (3) performs Canny edge detection on the image. Display all three
stages of processing in three different windows, with each window appropri-
ately named for its function.

b. Display all three stages of processing in one image.

Hint: Create another image of the same height but three times the width
as the video frame. Copy the images into this, either by using pointers
or (more cleverly) by creating three new image headers that point to

the beginning of and to one-third and two-thirds of the way into the
imageData. Then use cvCopy().

c. Write appropriate text labels describing the processing in each of the three
slots.

2. Create a program that reads in and displays an image. When the user’s mouse clicks
on the image, read in the corresponding pixel (blue, green, red) values and write
those values as text to the screen at the mouse location.

a. For the program of exercise 1b, display the mouse coordinates of the individual
image when clicking anywhere within the three-image display.

3. Create a program that reads in and displays an image.

a. Allow the user to select a rectangular region in the image by drawing a rectan-
gle with the mouse button held down, and highlight the region when the mouse
button is released. Be careful to save an image copy in memory so that your
drawing into the image does not destroy the original values there. The next
mouse click should start the process all over again from the original image.

b. Inaseparate window, use the drawing functions to draw a graph in blue, green,
and red for how many pixels of each value were found in the selected box. This
is the color histogram of that color region. The x-axis should be eight bins that
represent pixel values falling within the ranges 0-31, 32-63, . . ., 223-255. The
y-axis should be counts of the number of pixels that were found in that bin
range. Do this for each color channel, BGR.

4. Make an application that reads and displays a video and is controlled by slid-
ers. One slider will control the position within the video from start to end in 10
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5.

increments; another binary slider should control pause/unpause. Label both sliders
appropriately.

Create your own simple paint program.

a. Write a program that creates an image, sets it to 0, and then displays it. Allow
the user to draw lines, circles, ellipses, and polygons on the image using the
left mouse button. Create an eraser function when the right mouse button is
held down.

b. Allow “logical drawing” by allowing the user to set a slider setting to AND,
OR, and XOR. That is, if the setting is AND then the drawing will appear only
when it crosses pixels greater than 0 (and so on for the other logical functions).

Write a program that creates an image, sets it to 0, and then displays it. When the user
clicks on a location, he or she can type in a label there. Allow Backspace to edit and
provide for an abort key. Hitting Enter should fix the label at the spot it was typed.

Perspective transform.

a. Write a program that reads in an image and uses the numbers 1-9 on the keypad
to control a perspective transformation matrix (refer to our discussion of the
cviarpPerspective() in the Dense Perspective Transform section of Chapter 6).
Tapping any number should increment the corresponding cell in the perspective
transform matrix; tapping with the Shift key depressed should decrement the
number associated with that cell (stopping at 0). Each time a number is changed,
display the results in two images: the raw image and the transformed image.

b. Add functionality to zoom in or out?

¢. Add functionality to rotate the image?

. Face fun. Go to the /samples/c/ directory and build the facedetect.c code. Draw a

skull image (or find one on the Web) and store it to disk. Modify the facedetect pro-
gram to load in the image of the skull.

a. When a face rectangle is detected, draw the skull in that rectangle.

Hint: cvConvertImage() can convert the size of the image, or you
could look up the cvResize function. One may then set the ROI to the
rectangle and use cvCopy() to copy the properly resized image there.

b. Add a slider with 10 settings corresponding to 0.0 to 1.0. Use this slider to al-
pha blend the skull over the face rectangle using the cvAddWeighted function.

Image stabilization. Go to the /samples/c/ directory and build the lkdemo code (the
motion tracking or optical flow code). Create and display a video image in a much
larger window image. Move the camera slightly but use the optical flow vectors to
display the image in the same place within the larger window. This is a rudimentary
image stabilization technique.
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CHAPTER 5
Image Processing

Overview

At this point we have all of the basics at our disposal. We understand the structure of
the library as well as the basic data structures it uses to represent images. We under-
stand the HighGUI interface and can actually run a program and display our results on
the screen. Now that we understand these primitive methods required to manipulate
image structures, we are ready to learn some more sophisticated operations.

We will now move on to higher-level methods that treat the images as images, and not just
as arrays of colored (or grayscale) values. When we say “image processing”, we mean just
that: using higher-level operators that are defined on image structures in order to accom-
plish tasks whose meaning is naturally defined in the context of graphical, visual images.

Smoothing

Smoothing, also called blurring, is a simple and frequently used image processing opera-
tion. There are many reasons for smoothing, but it is usually done to reduce noise or
camera artifacts. Smoothing is also important when we wish to reduce the resolution
of an image in a principled way (we will discuss this in more detail in the “Image Pyra-
mids” section of this chapter).

OpenCV offers five different smoothing operations at this time. All of them are sup-
ported through one function, cvSmooth(),* which takes our desired form of smoothing
as an argument.

void cvSmooth(
const CvArr*  src,

CvATrT* dst,
int smoothtype = CV_GAUSSIAN,
int paraml =3,

* Note that—unlike in, say, Matlab—the filtering operations in OpenCV (e.g., cvSmooth(), cvErode(),
cvDilate()) produce output images of the same size as the input. To achieve that result, OpenCV creates
“virtual” pixels outside of the image at the borders. By default, this is done by replication at the border, i.e.,
input(-dx,y)=input(0,y), input(w+dx,y)=input(w-1,y), and so forth.
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int param2 =0,

double param3 =0,

double param4 =0
);

The src and dst arguments are the usual source and destination for the smooth opera-
tion. The cv_Smooth() function has four parameters with the particularly uninformative
names of paraml, param2, param3, and param4. The meaning of these parameters de-
pends on the value of smoothtype, which may take any of the five values listed in Table 5-1.%
(Please notice that for some values of ST, “in place operation”, in which src and dst indi-
cate the same image, is not allowed.)

Table 5-1. Types of smoothing operations

In Depth Depth

Smooth type Name place?  Nc of src of dst Brief description

CV_BLUR Simple blur Yes 13 8u, 32f 8u, 32f Sum over a paramixparam2
neighborhood with sub-
sequent scaling by 1/
(paramixparam2).

CV_BLUR_NO Simple blur No 1 8u 16 (for 8u Sum overa paramixparam2

_SCALE with no scaling source)or  neighborhood.

32f (for 32f
source)

CV_MEDIAN Median blur No 13 8u 8u Find median overa
paramlxparamil square
neighborhood.

CV_GAUSSIAN Gaussian blur Yes 13 8u, 32f 8u (for 8u Sum overa paramixparam2

source) or neighborhood.
32f (for 32f
source)
CV_BILATERAL  Bilateral filter No 13 8u 8u Apply bilateral 3-by-3 filtering

with color sigma=param1 and
aspace sigma=param2.

The simple blur operation, as exemplified by CV BLUR in Figure 5-1, is the simplest case.
Each pixel in the output is the simple mean of all of the pixels in a window around the
corresponding pixel in the input. Simple blur supports 1-4 image channels and works
on 8-bit images or 32-bit floating-point images.

Not all of the smoothing operators act on the same sorts of images. CV BLUR_NO SCALE
(simple blur without scaling) is essentially the same as simple blur except that there is no
division performed to create an average. Hence the source and destination images must
have different numerical precision so that the blurring operation will not result in an
overflow. Simple blur without scaling may be performed on 8-bit images, in which case
the destination image should have IPL DEPTH 16S (CV_16S) or IPL DEPTH 32S (CV_32S)

* Here and elsewhere we sometimes use 8u as shorthand for 8-bit unsigned image depth (IPL_DEPTH 8U). See
Table 3-2 for other shorthand notation.
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Figure 5-1. Image smoothing by block averaging: on the left are the input images; on the right, the
output images

data types. The same operation may also be performed on 32-bit floating-point images,
in which case the destination image may also be a 32-bit floating-point image. Simple
blur without scaling cannot be done in place: the source and destination images must be
different. (This requirement is obvious in the case of 8 bits to 16 bits, but it applies even
when you are using a 32-bit image). Simple blur without scaling is sometimes chosen
because it is a little faster than blurring with scaling.

The median filter (CV_MEDIAN) [Bardyn84] replaces each pixel by the median or “middle”
pixel (as opposed to the mean pixel) value in a square neighborhood around the center
pixel. Median filter will work on single-channel or three-channel or four-channel 8-bit
images, but it cannot be done in place. Results of median filtering are shown in Figure 5-2.
Simple blurring by averaging can be sensitive to noisy images, especially images with
large isolated outlier points (sometimes called “shot noise”). Large differences in even a
small number of points can cause a noticeable movement in the average value. Median
filtering is able to ignore the outliers by selecting the middle points.

The next smoothing filter, the Gaussian filter (CV_GAUSSIAN), is probably the most useful
though not the fastest. Gaussian filtering is done by convolving each point in the input
array with a Gaussian kernel and then summing to produce the output array.
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Figure 5-2. Image blurring by taking the median of surrounding pixels

For the Gaussian blur (Figure 5-3), the first two parameters give the width and height of
the filter window; the (optional) third parameter indicates the sigma value (half width at
half max) of the Gaussian kernel. If the third parameter is not specified, then the Gaussian
will be automatically determined from the window size using the following formulae:

X

o =[”—2"—1J'0.30+0.80, n_=paraml

n
o ={—y—l]~0.30+0.80, n_=param?2
Yy 2 Y

If you wish the kernel to be asymmetric, then you may also (optionally) supply a fourth
parameter; in this case, the third and fourth parameters will be the values of sigma in
the horizontal and vertical directions, respectively.

If the third and fourth parameters are given but the first two are set to 0, then the size of
the window will be automatically determined from the value of sigma.

The OpenCV implementation of Gaussian smoothing also provides a higher per-
formance optimization for several common kernels. 3-by-3, 5-by-5 and 7-by-7 with
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Figure 5-3. Gaussian blur on 1D pixel array

the “standard” sigma (i.e., param3 = 0.0) give better performance than other kernels.
Gaussian blur supports single- or three-channel images in either 8-bit or 32-bit floating-
point formats, and it can be done in place. Results of Gaussian blurring are shown in
Figure 5-4.

The fifth and final form of smoothing supported by OpenCV is called bilateral filtering
[Tomasi98], an example of which is shown in Figure 5-5. Bilateral filtering is one opera-
tion from a somewhat larger class of image analysis operators known as edge-preserving
smoothing. Bilateral filtering is most easily understood when contrasted to Gaussian
smoothing. A typical motivation for Gaussian smoothing is that pixels in a real image
should vary slowly over space and thus be correlated to their neighbors, whereas ran-
dom noise can be expected to vary greatly from one pixel to the next (i.e., noise is not
spatially correlated). It is in this sense that Gaussian smoothing reduces noise while pre-
serving signal. Unfortunately, this method breaks down near edges, where you do ex-
pect pixels to be uncorrelated with their neighbors. Thus Gaussian smoothing smoothes
away the edges. At the cost of a little more processing time, bilateral filtering provides us
a means of smoothing an image without smoothing away the edges.

Like Gaussian smoothing, bilateral filtering constructs a weighted average of each
pixel and its neighboring components. The weighting has two components, the first of
which is the same weighting used by Gaussian smoothing. The second component is
also a Gaussian weighting but is based not on the spatial distance from the center pixel
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Figure 5-4. Gaussian blurring

but rather on the difference in intensity* from the center pixel." You can think of bilat-
eral filtering as Gaussian smoothing that weights more similar pixels more highly than
less similar ones. The effect of this filter is typically to turn an image into what appears
to be a watercolor painting of the same scene. This can be useful as an aid to segment-
ing the image.

Bilateral filtering takes two parameters. The first is the width of the Gaussian kernel
used in the spatial domain, which is analogous to the sigma parameters in the Gaussian
filter. The second is the width of the Gaussian kernel in the color domain. The larger
this second parameter is, the broader is the range of intensities (or colors) that will be
included in the smoothing (and thus the more extreme a discontinuity must be in order
to be preserved).

* In the case of multichannel (i.e., color) images, the difference in intensity is replaced with a weighted sum
over colors. This weighting is chosen to enforce a Euclidean distance in the CIE color space.

+ Technically, the use of Gaussian distribution functions is not a necessary feature of bilateral filtering. The
implementation in OpenCV uses Gaussian weighting even though the method is general to many possible
weighting functions.

i This effect is particularly pronounced after multiple iterations of bilateral filtering.
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Figure 5-5. Results of bilateral smoothing

Image Morphology

OpenCV provides a fast, convenient interface for doing morphological transformations
[Serra83] on an image. The basic morphological transformations are called dilation and
erosion, and they arise in a wide variety of contexts such as removing noise, isolating
individual elements, and joining disparate elements in an image. Morphology can also
be used to find intensity bumps or holes in an image and to find image gradients.

Dilation and Erosion

Dilation is a convolution of some image (or region of an image), which we will call A,
with some kernel, which we will call B. The kernel, which can be any shape or size, has
a single defined anchor point. Most often, the kernel is a small solid square or disk with
the anchor point at the center. The kernel can be thought of as a template or mask, and
its effect for dilation is that of a local maximum operator. As the kernel B is scanned
over the image, we compute the maximal pixel value overlapped by B and replace the
image pixel under the anchor point with that maximal value. This causes bright regions
within an image to grow as diagrammed in Figure 5-6. This growth is the origin of the
term “dilation operator”.
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Figure 5-6. Morphological dilation: take the maximum under the kernel B

Erosion is the converse operation. The action of the erosion operator is equivalent to
computing a local minimum over the area of the kernel. Erosion generates a new image
from the original using the following algorithm: as the kernel B is scanned over the im-
age, we compute the minimal pixel value overlapped by B and replace the image pixel
under the anchor point with that minimal value.* Erosion is diagrammed in Figure 5-7.
A %

Image morphology is often done on binary images that result from
as thresholding. However, because dilation is just a max operator and
S {Liv erosion is just a min operator, morphology may be used on intensity
* images as well.

In general, whereas dilation expands region A, erosion reduces region A. Moreover, di-
lation will tend to smooth concavities and erosion will tend to smooth away protrusions.
Of course, the exact result will depend on the kernel, but these statements are generally
true for the filled convex kernels typically used.

In OpenCV, we effect these transformations using the cvErode() and cvDilate()
functions:

void cvErode(

IplImage* sIC,

IplImage* dst,
IplConvKernel* B = NULL,
int iterations =1

* To be precise, the pixel in the destination image is set to the value equal to the minimal value of the pixels
under the kernel in the source image.
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Figure 5-7. Morphological erosion: take the minimum under the kernel B

void cvDilate(

IplImage* srC,

IplImage* dst,
IplConvKernel* B = NULL,
int iterations = 1

);

Both cvErode() and cvDilate() take a source and destination image, and both support
“in place” calls (in which the source and destination are the same image). The third ar-
gument is the kernel, which defaults to NULL. In the NULL case, the kernel used is a 3-by-3
kernel with the anchor at its center (we will discuss shortly how to create your own
kernels). Finally, the fourth argument is the number of iterations. If not set to the de-
fault value of 1, the operation will be applied multiple times during the single call to the
function. The results of an erode operation are shown in Figure 5-8 and those of a dila-
tion operation in Figure 5-9. The erode operation is often used to eliminate “speckle”
noise in an image. The idea here is that the speckles are eroded to nothing while larger
regions that contain visually significant content are not affected. The dilate operation
is often used when attempting to find connected components (i.e., large discrete regions
of similar pixel color or intensity). The utility of dilation arises because in many cases
a large region might otherwise be broken apart into multiple components as a result of
noise, shadows, or some other similar effect. A small dilation will cause such compo-
nents to “melt” together into one.

To recap: when OpenCV processes the cvErode() function, what happens beneath the
hood is that the value of some point p is set to the minimum value of all of the points
covered by the kernel when aligned at p; for the dilation operator, the equation is the
same except that max is considered rather than min:
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Figure 5-8. Results of the erosion, or “min”, operator: bright regions are isolated and shrunk

eode(x,y)= min  sc(X+ X, y+Y)
(x*,y")ekernel

dilae(x,y)= max sc(x+X,y+Y)
(x’,y")ekernd
You might be wondering why we need a complicated formula when the earlier heuris-
tic description was perfectly sufficient. Some readers actually prefer such formulas but,
more importantly, the formulas capture some generality that isn’t apparent in the quali-
tative description. Observe that if the image is not binary then the min and max opera-
tors play a less trivial role. Take another look at Figures 5-8 and 5-9, which show the
erosion and dilation operators applied to two real images.

Making Your Own Kernel

You are not limited to the simple 3-by-3 square kernel. You can make your own cus-
tom morphological kernels (our previous “kernel B”) using IplConvKernel. Such
kernels are allocated using cvCreateStructuringElementEx() and are released using
cvReleaseStructuringElement().

IplConvKernel* cvCreateStructuringElementEx(

int cols,
int TOoWS,
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Figure 5-9. Results of the dilation, or “max”, operator: bright regions are expanded and often joined

int anchor_x,
int anchor y,
int shape,

int* values=NULL

)

void cvReleaseStructuringElement( IplConvKernel** element );
A morphological kernel, unlike a convolution kernel, doesn’t require any numerical val-
ues. The elements of the kernel simply indicate where the max or min computations
take place as the kernel moves around the image. The anchor point indicates how the
kernel is to be aligned with the source image and also where the result of the computa-
tion is to be placed in the destination image. When creating the kernel, cols and rows
indicate the size of the rectangle that holds the structuring element. The next param-
eters, anchor_x and anchor y, are the (x, y) coordinates of the anchor point within the
enclosing rectangle of the kernel. The fifth parameter, shape, can take on values listed
in Table 5-2. If CV_SHAPE_CUSTOM is used, then the integer vector values is used
to define a custom shape of the kernel within the rows-by-cols enclosing rectangle. This
vector is read in raster scan order with each entry representing a different pixel in the
enclosing rectangle. Any nonzero value is taken to indicate that the corresponding pixel
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should be included in the kernel. If values is NULL then the custom shape is interpreted
to be all nonzero, resulting in a rectangular kernel.*

Table 5-2. Possible IplConvKernel shape values

Shape value Meaning

CV_SHAPE RECT The kernel is rectangular
CV_SHAPE_CROSS The kernel is cross shaped
CV_SHAPE_ELLIPSE The kernel is elliptical
CV_SHAPE_CUSTOM The kernel is user-defined via values

More General Morphology

When working with Boolean images and image masks, the basic erode and dilate opera-
tions are usually sufficient. When working with grayscale or color images, however, a
number of additional operations are often helpful. Several of the more useful operations
can be handled by the multi-purpose cvMorphologyEx() function.

void cvMorphologyEx(
const CvArr*  src,

CvATT* dst,

CvArr* temp,
IplConvKernel* element,

int operation,

int iterations =1

);
In addition to the arguments src, dst, element, and iterations, which we used with pre-
vious operators, cvMorphologyEx() has two new parameters. The first is the temp array,
which is required for some of the operations (see Table 5-3). When required, this array
should be the same size as the source image. The second new argument—the really in-
teresting one—is operation, which selects the morphological operation that we will do.

Table 5-3. cvMorphologyEx() operation options

Value of operation Morphological operator Requires temp image?
CV_MOP_OPEN Opening No

CV_MOP_CLOSE Closing No

CV_MOP_GRADIENT Morphological gradient Always

CV_MOP_TOPHAT Top Hat Forin-place only (src = dst)
CV_MOP_BLACKHAT Black Hat Forin-place only (src = dst)

Opening and closing

The first two operations in Table 5-3, opening and closing, are combinations of the erosion
and dilation operators. In the case of opening, we erode first and then dilate (Figure 5-10).

* If the use of this strange integer vector strikes you as being incongruous with other OpenCV functions, you
are not alone. The origin of this syntax is the same as the origin of the IPL prefix to this function—another
instance of archeological code relics.
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Opening is often used to count regions in a binary image. For example, if we have
thresholded an image of cells on a microscope slide, we might use opening to separate
out cells that are near each other before counting the regions. In the case of closing, we
dilate first and then erode (Figure 5-12). Closing is used in most of the more sophisti-
cated connected-component algorithms to reduce unwanted or noise-driven segments.
For connected components, usually an erosion or closing operation is performed first to
eliminate elements that arise purely from noise and then an opening operation is used
to connect nearby large regions. (Notice that, although the end result of using open or
close is similar to using erode or dilate, these new operations tend to preserve the area of
connected regions more accurately.)

These will go away
Gray
A

Dilate

2

Figure 5-10. Morphological opening operation: the upward outliers are eliminated as a result

Both the opening and closing operations are approximately area-preserving: the most
prominent effect of closing is to eliminate lone outliers that are lower than their neigh-
bors whereas the effect of opening is to eliminate lone outliers that are higher than their
neighbors. Results of using the opening operator are shown in Figure 5-11, and of the
closing operator in Figure 5-13.

One last note on the opening and closing operators concerns how the iterations ar-
gument is interpreted. You might expect that asking for two iterations of closing
would yield something like dilate-erode-dilate-erode. It turns out that this would not
be particularly useful. What you really want (and what you get) is dilate-dilate-erode-
erode. In this way, not only the single outliers but also neighboring pairs of outliers
will disappear.

Morphological gradient

Our next available operator is the morphological gradient. For this one it is probably
easier to start with a formula and then figure out what it means:

gradient(src) = dilate(src)-erode(src)

The effect of this operation on a Boolean image would be simply to isolate perimeters of
existing blobs. The process is diagrammed in Figure 5-14, and the effect of this operator
on our test images is shown in Figure 5-15.
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Figure 5-11. Results of morphological opening on an image: small bright regions are removed, and
the remaining bright regions are isolated but retain their size

Dip will go away
Gray
3

Dilate

—

Figure 5-12. Morphological closing operation: the downward outliers are eliminated as a result

With a grayscale image we see that the value of the operator is telling us something
about how fast the image brightness is changing; this is why the name “morphological
gradient” is justified. Morphological gradient is often used when we want to isolate the
perimeters of bright regions so we can treat them as whole objects (or as whole parts of
objects). The complete perimeter of a region tends to be found because an expanded ver-
sion is subtracted from a contracted version of the region, leaving a complete perimeter
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Figure 5-13. Results of morphological closing on an image: bright regions are joined but retain their
basic size

edge. This differs from calculating a gradient, which is much less likely to work around
the full perimeter of an object.*

Top Hat and Black Hat

The last two operators are called Top Hat and Black Hat [Meyer78]. These operators are
used to isolate patches that are, respectively, brighter or dimmer than their immedi-
ate neighbors. You would use these when trying to isolate parts of an object that ex-
hibit brightness changes relative only to the object to which they are attached. This often
occurs with microscope images of organisms or cells, for example. Both operations are
defined in terms of the more primitive operators, as follows:

TopHat(src) = src—open(src)
BlackHat(src) = close(src)-src

As you can see, the Top Hat operator subtracts the opened form of A from A. Recall
that the effect of the open operation was to exaggerate small cracks or local drops. Thus,

* We will return to the topic of gradients when we introduce the Sobel and Scharr operators in the next
chapter.
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Grad

Figure 5-14. Morphological gradient applied to a grayscale image: as expected, the operator has its
highest values where the grayscale image is changing most rapidly

subtracting open(A) from A should reveal areas that are lighter then the surrounding
region of A, relative to the size of the kernel (see Figure 5-16); conversely, the Black Hat
operator reveals areas that are darker than the surrounding region of A (Figure 5-17).
Summary results for all the morphological operators discussed in this chapter are as-
sembled in Figure 5-18.*

Flood Fill

Flood fill [Heckbert00; Shaw04; Vandevenne04] is an extremely useful function that
is often used to mark or isolate portions of an image for further processing or analysis.
Flood fill can also be used to derive, from an input image, masks that can be used for
subsequent routines to speed or restrict processing to only those pixels indicated by the
mask. The function cvFloodFill() itself takes an optional mask that can be further used
to control where filling is done (e.g., when doing multiple fills of the same image).

In OpenCV, flood fill is a more general version of the sort of fill functionality which
you probably already associate with typical computer painting programs. For both, a
seed point is selected from an image and then all similar neighboring points are colored
with a uniform color. The difference here is that the neighboring pixels need not all be

* Both of these operations (Top Hat and Black Hat) make more sense in grayscale morphology, where the
structuring element is a matrix of real numbers (not just a binary mask) and the matrix is added to the cur-
rent pixel neighborhood before taking a minimum or maximum. Unfortunately, this is not yet implemented
in OpenCV.
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Figure 5-15. Results of the morphological gradient operator: bright perimeter edges are identified

identical in color.* The result of a flood fill operation will always be a single contiguous
region. The cvFloodFill() function will color a neighboring pixel if it is within a speci-
fied range (1oDiff to upDifef) of either the current pixel or if (depending on the settings of
flags) the neighboring pixel is within a specified range of the original seedPoint value.
Flood filling can also be constrained by an optional mask argument. The prototype for

the flood fill routine is:

void cvFloodFill(
IplImage*
CvPoint
CvScalar
CvScalar
CvScalar
CvConnectedComp*
int
CvATT*

)

img,

seedPoint,

newVal,

loDiff = cvScalarAll1(0),
upDiff = cvScalarAll(o),
comp = NULL,

flags = 4,

mask = NULL

The parameter img is the input image, which can be 8-bit or floating-point and one-
channel or three-channel. We start the flood filling from seedPoint, and newvVal is the

* Users of contemporary painting and drawing programs should note that most now employ a filling algo-
rithm very much like cvFloodFill().
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Figure 5-16. Results of morphological Top Hat operation: bright local peaks are isolated

value to which colorized pixels are set. A pixel will be colorized if its intensity is not
less than a colorized neighbor’s intensity minus loDiff and not greater than the color-
ized neighbor’s intensity plus upDiff. If the flags argument includes CV_FLOODFILL FIXED
RANGE, then a pixel will be compared to the original seed point rather than to its neigh-
bors. If non-NULL, comp is a CvConnectedComp structure that will hold statistics about the
areas filled.* The flags argument (to be discussed shortly) is a little tricky; it controls
the connectivity of the fill, what the fill is relative to, whether we are filling only a mask,
and what values are used to fill the mask. Our first example of flood fill is shown in
Figure 5-19.

The argument mask indicates a mask that can function both as input to cvFloodFill() (in
which case it constrains the regions that can be filled) and as output from cvFloodFill()
(in which case it will indicate the regions that actually were filled). If set to a non-NULL
value, then mask must be a one-channel, 8-bit image whose size is exactly two pixels
larger in width and height than the source image (this is to make processing easier and
faster for the internal algorithm). Pixel (x + 1, y + 1) in the mask image corresponds
to image pixel (x, y) in the source image. Note that cvFloodFill() will not flood across

* We will address the specifics of a “connected component” in the section “Image Pyramids”. For now, just
think of it as being similar to a mask that identifies some subsection of an image.
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Figure 5-17. Results of morphological Black Hat operation: dark holes are isolated

Image | Erosion 1B Dialation |®B Opening loB= (I®B)®B

Closing I-B= (I1®B)®B Grad(l)= (I&B)-(I®B) TopHat(l)=1-(1®B)  BlackHat(l)= (1©B) -1

Figure 5-18. Summary results for all morphology operators

nonzero pixels in the mask, so you should be careful to zero it before use if you don’t
want masking to block the flooding operation. Flood fill can be set to colorize either the
source image img or the mask image mask.
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Figure 5-19. Results of flood fill (top image is filled with gray, bottom image with white) from the
dark circle located just off center in both images; in this case, the hiDiff and loDiff parameters were
each set to 7.0

N

If the flood-fill mask is set to be marked, then it is marked with the

values set in the middle bits (8-15) of the flags value (see text). If these

{Lis bits are not set then the mask is set to 1 as the default value. Don’t be

* confused if you fill the mask and see nothing but black upon display;
the filled values (if the middle bits of the flag weren’t set) are 1s, so the
mask image needs to be rescaled if you want to display it visually.

It’s time to clarify the flags argument, which is tricky because it has three parts. The
low 8 bits (0-7) can be set to 4 or 8. This controls the connectivity considered by the fill-
ing algorithm. If set to 4, only horizontal and vertical neighbors to the current pixel are
considered in the filling process; if set to 8, flood fill will additionally include diagonal
neighbors. The high 8 bits (16-23) can be set with the flags CvV_FLOODFILL FIXED RANGE
(fill relative to the seed point pixel value; otherwise, fill relative to the neighbor’s value),
and/or CV_FLOODFILL_MASK_ONLY (fill the mask location instead of the source image loca-
tion). Obviously, you must supply an appropriate mask if CV_FLOODFILL_MASK_ONLY is set.
The middle bits (8-15) of flags can be set to the value with which you want the mask
to be filled. If the middle bits of flags are 0s, the mask will be filled with 1s. All these
flags may be linked together via OR. For example, if you want an 8-way connectivity fill,
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filling only a fixed range, filling the mask not the image, and filling using a value of 47,
then the parameter to pass in would be:
flags = 8

| CV_FLOODFILL MASK ONLY

| CV_FLOODFILL_FIXED RANGE

| (47<<8);
Figure 5-20 shows flood fill in action on a sample image. Using CV_FLOODFILL FIXED RANGE
with a wide range resulted in most of the image being filled (starting at the center).
We should note that newval, 1oDiff, and upDiff are prototyped as type CvScalar so they
can be set for three channels at once (i.e., to encompass the RGB colors specified via
CV_RGB()). For example, lowDiff = CV_RGB(20,30,40) will set lowDiff thresholds of 20 for
red, 30 for green, and 40 for blue.

Figure 5-20. Results of flood fill (top image is filled with gray, bottom image with white) from the
dark circle located just off center in both images; in this case, flood fill was done with a fixed range
and with a high and low difference of 25.0

Resize

We often encounter an image of some size that we would like to convert to an image
of some other size. We may want to upsize (zoom in) or downsize (zoom out) the im-
age; we can accomplish either task by using cvResize(). This function will fit the source
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image exactly to the destination image size. If the ROI is set in the source image then
that ROI will be resized to fit in the destination image. Likewise, if an ROI is set in the
destination image then the source will be resized to fit into the ROL.

void cvResize(
const CvArr*  src,
CvATT* dst,
int interpolation = CV_INTER LINEAR
);
The last argument is the interpolation method, which defaults to linear interpolation.
The other available options are shown in Table 5-4.

Table 5-4. cvResize() interpolation options

Interpolation Meaning
CV_INTER_NN Nearest neighbor
CV_INTER_LINEAR Bilinear
CV_INTER_AREA Pixel area re-sampling
CV_INTER CUBIC Bicubicinterpolation

In general, we would like the mapping from the source image to the resized destina-
tion image to be as smooth as possible. The argument interpolation controls exactly
how this will be handled. Interpolation arises when we are shrinking an image and a
pixel in the destination image falls in between pixels in the source image. It can also
occur when we are expanding an image and need to compute values of pixels that do
not directly correspond to any pixel in the source image. In either case, there are several
options for computing the values of such pixels. The easiest approach is to take the
resized pixel’s value from its closest pixel in the source image; this is the effect of choos-
ing the interpolation value CV_INTER_NN. Alternatively, we can linearly weight the 2-by-2
surrounding source pixel values according to how close they are to the destination pixel,
which is what CV_INTER_LINEAR does. We can also virtually place the new resized pixel over
the old pixels and then average the covered pixel values, as done with CV_INTER _AREA.X
Finally, we have the option of fitting a cubic spline between the 4-by-4 surrounding pix-
els in the source image and then reading off the corresponding destination value from
the fitted spline; this is the result of choosing the CV_INTER_CUBIC interpolation method.

Image Pyramids

Image pyramids [Adelson84] are heavily used in a wide variety of vision applications.
An image pyramid is a collection of images—all arising from a single original image—
that are successively downsampled until some desired stopping point is reached. (Of
course, this stopping point could be a single-pixel image!)

* Atleast that’s what happens when cvResize() shrinks an image. When it expands an image, CV_INTER
AREA amounts to the same thing as CV_INTER_NN.
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There are two kinds of image pyramids that arise often in the literature and in appli-
cation: the Gaussian [Rosenfeld80] and Laplacian [Burt83] pyramids [Adelson84]. The
Gaussian pyramid is used to downsample images, and the Laplacian pyramid (to be dis-
cussed shortly) is required when we want to reconstruct an upsampled image from an
image lower in the pyramid.

To produce layer (i+1) in the Gaussian pyramid (we denote this layer G,,,) from layer G;
of the pyramid, we first convolve G; with a Gaussian kernel and then remove every even-
numbered row and column. Of course, from this it follows immediately that each image
is exactly one-quarter the area of its predecessor. Iterating this process on the input im-
age G, produces the entire pyramid. OpenCV provides us with a method for generating
each pyramid stage from its predecessor:

void cvPyrDown(
IplImage*  src,
IplImage*  dst,
IplFilter  filter = IPL_GAUSSIAN 5x5
);
Currently, the last argument filter supports only the single (default) option of a 5-by-5
Gaussian kernel.

Similarly, we can convert an existing image to an image that is twice as large in each
direction by the following analogous (but not inverse!) operation:
void cvPyrUp(
IplImage*  src,
IplImage*  dst,
IplFilter filter = IPL GAUSSIAN 5x5
);
In this case the image is first upsized to twice the original in each dimension, with the
new (even) rows filled with 0Os. Thereafter, a convolution is performed with the given
filter (actually, a filter twice as large in each dimension than that specified*) to approxi-
mate the values of the “missing” pixels.

We noted previously that the operator PyrUp() is not the inverse of PyrDown(). This
should be evident because PyrDown() is an operator that loses information. In order to
restore the original (higher-resolution) image, we would require access to the informa-
tion that was discarded by the downsampling. This data forms the Laplacian pyramid.
The ith layer of the Laplacian pyramid is defined by the relation:

L =G -UPG, )®G, .

i+l

Here the operator UP() upsizes by mapping each pixel in location (x, y) in the original
image to pixel (2x + 1, 2y + 1) in the destination image; the ® symbol denotes convolu-
tion; and G, is a 5-by-5 Gaussian kernel. Of course, G, - UP(G,,;) ® G, is the definition

* This filter is also normalized to four, rather than to one. This is appropriate because the inserted rows have
0s in all of their pixels before the convolution.
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of the PyrUp() operator provided by OpenCv. Hence, we can use OpenCv to compute the
Laplacian operator directly as:

L =G, —PyrUp(G,,,)

i

The Gaussian and Laplacian pyramids are shown diagrammatically in Figure 5-21,
which also shows the inverse process for recovering the original image from the sub-
images. Note how the Laplacian is really an approximation that uses the difference of
Gaussians, as revealed in the preceding equation and diagrammed in the figure.

Gaussian Laplacian
Pyramid Pyramid

Gaussian qur=>_<ﬂ;>

Figure 5-21. The Gaussian pyramid and its inverse, the Laplacian pyramid

There are many operations that can make extensive use of the Gaussian and Laplacian
pyramids, but a particularly important one is image segmentation (see Figure 5-22). In
this case, one builds an image pyramid and then associates to it a system of parent-child
relations between pixels at level G, and the corresponding reduced pixel at level G,. In
this way, a fast initial segmentation can be done on the low-resolution images high in
the pyramid and then can be refined and further differentiated level by level.

This algorithm (due to B. Jachne [Jachne95; Antonisse82]) is implemented in OpenCV
as cvPyrSegmentation():
void cvPyrSegmentation(
IplImage* src,
IplImage* dst,
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Figure 5-22. Pyramid segmentation with thresholdl set to 150 and threshold2 set to 30; the im-
ages on the right contain only a subsection of the images on the left because pyramid segmentation
requires images that are N-times divisible by 2, where N is the number of pyramid layers to be com-
puted (these are 512-by-512 areas from the original images)

CvMemStorage* storage,

CvSeq** comp,

int level,
double thresholdi,
double threshold2

);
As usual, src and dst are the source and destination images, which must both be 8-bit,
of the same size, and of the same number of channels (one or three). You might be
wondering, “What destination image?” Not an unreasonable question, actually. The
destination image dst is used as scratch space for the algorithm and also as a return
visualization of the segmentation. If you view this image, you will see that each segment
is colored in a single color (the color of some pixel in that segment). Because this image
is the algorithm’s scratch space, you cannot simply set it to NULL. Even if you do not want
the result, you must provide an image. One important word of warning about src and
dst: because all levels of the image pyramid must have integer sizes in both dimensions,
the starting images must be divisible by two as many times as there are levels in the
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pyramid. For example, for a four-level pyramid, a height or width of 80 (2 x 2 x 2 x 5)
would be acceptable, but a value of 90 (2 x 3 x 3 x 5) would not.*

The pointer storage is for an OpenCV memory storage area. In Chapter 8 we will dis-
cuss such areas in more detail, but for now you should know that such a storage area is
allocated with a command like™
CvMemStorage* storage = cvCreateMemStorage();

The argument comp is a location for storing further information about the resulting seg-
mentation: a sequence of connected components is allocated from this memory storage.
Exactly how this works will be detailed in Chapter 8, but for convenience here we briefly
summarize what you’ll need in the context of cvPyrSegmentation().

First of all, a sequence is essentially a list of structures of a particular kind. Given a
sequence, you can obtain the number of elements as well as a particular element if you
know both its type and its number in the sequence. Take a look at the Example 5-1
approach to accessing a sequence.

Example 5-1. Doing something with each element in the sequence of connected components returned
by cvPyrSegmentation()
void f(
IplImage* src,
IplImage* dst
) A
CvMemStorage* storage = cvCreateMemStorage(0);
CvSeq* comp = NULL;
cvPyrSegmentation( src, dst, storage, &comp, 4, 200, 50 );
int n_comp = comp->total;
for( int i=0; i<n_comp; i++ ) {
CvConnectedComp* cc = (CvConnectedComp*) cvGetSeqElem( comp, i );
do_something with( cc );

}

cvReleaseMemStorage( &storage );

}

There are several things you should notice in this example. First, observe the allocation
of a memory storage; this is where cvPyrSegmentation() will get the memory it needs
for the connected components it will have to create. Then the pointer comp is allocated
as type CvSeg*. It is initialized to NULL because its current value means nothing. We will
pass to cvPyrSegmentation() a pointer to comp so that comp can be set to the location of
the sequence created by cvPyrSegmentation(). Once we have called the segmentation,
we can figure out how many elements there are in the sequence with the member ele-
ment total. Thereafter we can use the generic cvGetSeqElem() to obtain the ith element
of comp; however, because cvGetSeqElem() is generic and returns only a void pointer, we
must cast the return pointer to the appropriate type (in this case, CvConnectedComp*).

* Heed this warning! Otherwise, you will get a totally useless error message and probably waste hours trying
to figure out what’s going on.

+ Actually, the current implementation of cvPyrSegmentation() is a bit incomplete in that it returns not the
computed segments but only the bounding rectangles (as CvSeq<CvConnectedComp>).
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Finally, we need to know that a connected component is one of the basic structure types
in OpenCV. You can think of it as a way of describing a “blob” in an image. It has the
following definition:
typedef struct CvConnectedComponent {

double  area;

CvScalar value;

CvRect  rect;

CvSeq*  contour;
b
The area is the area of the component. The value is the average color* over the area of
the component and rect is a bounding box for the component (defined in the coordi-
nates of the parent image). The final element, contour, is a pointer to another sequence.
This sequence can be used to store a representation of the boundary of the component,
typically as a sequence of points (type CvPoint).

In the specific case of cvPyrSegmentation(), the contour member is not set. Thus, if you
want some specific representation of the component’s pixels then you will have to com-
pute it yourself. The method to use depends, of course, on the representation you have
in mind. Often you will want a Boolean mask with nonzero elements wherever the com-
ponent was located. You can easily generate this by using the rect portion of the con-
nected component as a mask and then using cvFloodFill() to select the desired pixels
inside of that rectangle.

Threshold

Frequently we have done many layers of processing steps and want either to make a
final decision about the pixels in an image or to categorically reject those pixels below
or above some value while keeping the others. The OpenCV function cvThreshold() ac-
complishes these tasks (see survey [Sezgin04]). The basic idea is that an array is given,
along with a threshold, and then something happens to every element of the array de-
pending on whether it is below or above the threshold.

double cvThreshold(

CvArT* SsIC,

CvArr* dst,

double threshold,
double max_value,

int threshold type

);
As shown in Table 5-5, each threshold type corresponds to a particular comparison op-
eration between the ith source pixel (src;) and the threshold (denoted in the table by T)).
Depending on the relationship between the source pixel and the threshold, the destina-
tion pixel dst; may be set to 0, the src;, or the max_value (denoted in the table by M).

* Actually the meaning of value is context dependant and could be just about anything, but it is typically a
color associated with the component. In the case of cvPyrSegmentation(), value is the average color over
the segment.
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Table 5-5. cvIhreshold() threshold_type options

Threshold type Operation
CV_THRESH_BINARY dstl, =(srcl, >T)IM:0

CV_THRESH_BINARY INV dsti =(src, >T)0:M

CV_THRESH_TRUNC dst. =(src. >T) ?M:src

CV_THRESH_TOZERO INV dst. =(src.>T) 20:src.
Il 1 li

CV_THRESH_TOZERO dsti = (Srci >T) ?Sr(‘i 0

Figure 5-23 should help to clarify the exact implications of each threshold type.

Value and Threshold Level

Threshold Binary

Threshold Binary, Inverted

Truncate

Threshold to Zero, Inverted

Threshold to Zero

Figure 5-23. Results of varying the threshold type in cvThreshold(). The horizontal line through each
chart represents a particular threshold level applied to the top chart and its effect for each of the five
types of threshold operations below

136 | Chapter5: Image Processing



Let’s look at a simple example. In Example 5-2 we sum all three channels of an image

and then clip the result at 100.

Example 5-2. Example code making use of cvThreshold()

#include <stdio.h>

#include <cv.h>

#include <highgui.h>

void sum_rgb( IplImage* src, IplImage* dst ) {

// Allocate individual image planes.

IplImage* r = cvCreateImage( cvGetSize(src), IPL DEPTH 8U, 1 );
IplImage* g = cvCreateImage( cvGetSize(src), IPL_DEPTH_8U, 1 );
IplImage* b = cvCreateImage( cvGetSize(src), IPL DEPTH 8U, 1 );

// Split image onto the color planes.
cvSplit( src, r, g, b, NULL );

// Temporary storage.

IplImage* s = cvCreateImage( cvGetSize(src), IPL DEPTH 8U, 1 );

// Add equally weighted rgb values.
cvAddWeighted( r, 1./3., g, 1./3., 0.0, s );
cvAddweighted( s, 2./3., b, 1./3., 0.0, s );

// Truncate values above 100.
cvThreshold( s, dst, 100, 100, CV THRESH TRUNC );

cvReleaseImage( &r );
cvReleaseImage( 8g );
cvReleaseImage( &b );
cvReleaseImage( &s );

}

int main(int argc, char** argv)

{

// Create a named window with the name of the file.
cvNamedwindow( argv[i], 1 );

// Load the image from the given file name.
IplImage* src = cvLoadImage( argv[1i] );

IplImage* dst = cvCreateImage( cvGetSize(src), src->depth, 1);

sum_rgb( src, dst);

// Show the image in the named window
cvShowImage( argv[1], dst );

// Idle until the user hits the “Esc” key.
while( 1 ) { if( (cvWaitKey( 10 )&0x7f) == 27 ) break; }

// Clean up and don’t be piggies
cvDestroyWindow( argv[1i] );
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Example 5-2. Example code making use of cvThreshold() (continued)

cvReleaseImage( 8src );
cvReleaseImage( &dst );

}

Some important ideas are shown here. One thing is that we don’t want to add into an
8-bit array because the higher bits will overflow. Instead, we use equally weighted ad-
dition of the three color channels (cvAddWeighted()); then the results are truncated to
saturate at the value of 100 for the return. The cvThreshold() function handles only 8-bit
or floating-point grayscale source images. The destination image must either match the
source image or be an 8-bit image. In fact, cvThreshold() also allows the source and des-
tination images to be the same image. Had we used a floating-point temporary image
s in Example 5-2, we could have substituted the code shown in Example 5-3. Note that
cvAcc() can accumulate 8-bit integer image types into a floating-point image; however,
cvADD() cannot add integer bytes into floats.

Example 5-3. Alternative method to combine and threshold image planes

IplImage* s = cvCreateImage(cvGetSize(src), IPL_DEPTH 32F, 1);
cvZero(s);

cvAcc(b,s);

cvAcc(g,s);

cvAcc(r,s);

cvThreshold( s, s, 100, 100, CV_THRESH TRUNC );
cvConvertScale( s, dst, 1, 0 );

Adaptive Threshold

There is a modified threshold technique in which the threshold level is itself variable. In
OpenCV, this method is implemented in the cvAdaptiveThreshold() [Jain86] function:

void cvAdaptiveThreshold(

CvArr* src,

CvATT* dst,

double max_val,

int adaptive_method = CV_ADAPTIVE THRESH MEAN C
int threshold type = CV_THRESH_BINARY,

int block size =3,

double parami =5

);

cvAdaptiveThreshold() allows for two different adaptive threshold types depending on
the settings of adaptive_method. In both cases the adaptive threshold T(x, y) is set on a
pixel-by-pixel basis by computing a weighted average of the b-by-b region around each
pixel location minus a constant, where b is given by block_size and the constant is given
by parami. If the method is set to CV_ADAPTIVE THRESH MEAN_C, then all pixels in the area
are weighted equally. If it is set to CV_ADAPTIVE THRESH GAUSSIAN C, then the pixels in the
region around (x, y) are weighted according to a Gaussian function of their distance
from that center point.
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Finally, the parameter threshold type is the same as for cvThreshold() shown in
Table 5-5.

The adaptive threshold technique is useful when there are strong illumination or reflec-
tance gradients that you need to threshold relative to the general intensity gradient. This
function handles only single-channel 8-bit or floating-point images, and it requires that
the source and destination images be distinct.

Source code for comparing cvAdaptiveThreshold() and cvThreshold() is shown in Exam-
ple 5-4. Figure 5-24 displays the result of processing an image that has a strong lighting
gradient across it. The lower-left portion of the figure shows the result of using a single
global threshold as in cvThreshold(); the lower-right portion shows the result of adaptive
local threshold using cvAdaptiveThreshold(). We get the whole checkerboard via adap-
tive threshold, a result that is impossible to achieve when using a single threshold. Note
the calling-convention comments at the top of the code in Example 5-4; the parameters
used for Figure 5-24 were:

./adaptThresh 15 1 1 71 15 ../Data/cal3-L.bmp

Source image

l-.m
B
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2 I---l [

Binary threshold Adaptive binary threshold

Figure 5-24. Binary threshold versus adaptive binary threshold: the input image (top) was turned
into a binary image using a global threshold (lower left) and an adaptive threshold (lower right); raw
image courtesy of Kurt Konolidge
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Example 5-4. Threshold versus adaptive threshold
// Compare thresholding with adaptive thresholding

// CALL:
// ./adaptThreshold Threshold 1binary ladaptivemean \
// blocksize offset filename

#include “cv.h”
#include “highgui.h”
#include “math.h”
IplImage *Igray=0, *It = 0, *Iat;
int main( int argc, char** argv )
{
if(argc != 7){return -1; }

//Command line
double threshold = (double)atof(argv[1]);
int threshold type = atoi(argv[2]) ?
CV_THRESH_BINARY : CV THRESH BINARY INV
int adaptive method = atoi(argv[3]) ?
CV_ADAPTIVE THRESH MEAN C : CV_ADAPTIVE THRESH GAUSSIAN C;
int block size = atoi(argv([4]);
double offset = (double)atof(argv(s]);

//Read in gray image
if((Igray = cvLoadImage( argv[6], CV_LOAD IMAGE GRAYSCALE)) == 0){
return -1;}

// Create the grayscale output images

It = cvCreateImage(cvSize(Igray->width,Igray->height),
IPL_DEPTH 8U, 1);

Iat = cvCreateImage(cvSize(Igray->width,Igray->height),
IPL_DEPTH 8U, 1);

//Threshold

cvThreshold(Igray,It,threshold,255,threshold type);

cvAdaptiveThreshold(Igray, Iat, 255, adaptive method,
threshold type, block size, offset);

//PUT UP 2 WINDOWS

cvNamedWindow(“Raw”,1);

cvNamedWindow(“Threshold”,1);

cvNamedWindow(“Adaptive Threshold”,1);

//Show the results
cvShowImage(“Raw”,Igray);
cvShowImage(“Threshold”,It);
cvShowImage(“Adaptive Threshold”,Iat);

cviWaitKey(0);

//Clean up
cvReleaseImage(8Igray);
cvReleaseImage(81It);
cvReleaseImage(8Iat);
cvDestroyWindow(“Raw”);
cvDestroyWindow(“Threshold”);
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Example 5-4. Threshold versus adaptive threshold (continued)

cvDestroyWindow(“Adaptive Threshold”);
return(0);

}

Exercises

1. Load an image with interesting textures. Smooth the image in several ways using
cvSmooth() with smoothtype=CV_GAUSSIAN.

a. Use a symmetric 3-by-3, 5-by-5, 9-by-9 and 11-by-11 smoothing window size
and display the results.

b. Are the output results nearly the same by smoothing the image twice with a
5-by-5 Gaussian filter as when you smooth once with two 11-by-11 filters? Why
or why not?

2. Display the filter, creating a 100-by-100 single-channel image. Clear it and set the
center pixel equal to 255.

a. Smooth this image with a 5-by-5 Gaussian filter and display the results. What
did you find?

b. Do this again but now with a 9-by-9 Gaussian filter.

c. What does it look like if you start over and smooth the image twice with the
5-by-5 filter? Compare this with the 9-by-9 results. Are they nearly the same?
Why or why not?

3. Load an interesting image. Again, blur it with cvSmooth() using a Gaussian filter.

a. Set parami=param2=9. Try several settings of param3 (e.g., 1, 4, and 6). Display the
results.

b. This time, set parami=param2=0 before setting param3 to 1, 4, and 6. Display the
results. Are they different? Why?

c. Again use parami=param2=0 but now set param3=1 and param4=9. Smooth the pic-
ture and display the results.

d. Repeat part c but with param3=9 and param4=1. Display the results.

e. Now smooth the image once with the settings of part ¢ and once with the set-
tings of part d. Display the results.

f. Compare the results in part e with smoothings that use param3=param4=9 and
param3=param4=0 (i.e., a 9-by-9 filter). Are the results the same? Why or why not?

4. Use a camera to take two pictures of the same scene while moving the camera as
little as possible. Load these images into the computer as src1 and srci.

a. Take the absolute value of src1 minus srci (subtract the images); call it diff12
and display. If this were done perfectly, diff12 would be black. Why isn’t it?
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10.

b. Create cleandiff by using cvErode() and then cvDilate() on diff12. Display the
results.

c. Create dirtydiff by using cvDilate() and then cvErode() on diffi12 and then
display.

d. Explain the difference between cleandiff and dirtydiff.

Take a picture of a scene. Then, without moving the camera, put a coffee cup in the
scene and take a second picture. Load these images and convert both to 8-bit gray-
scale images.

a. Take the absolute value of their difference. Display the result, which should
look like a noisy mask of a coffee mug.

b. Do a binary threshold of the resulting image using a level that preserves most
of the coffee mug but removes some of the noise. Display the result. The “on”
values should be set to 255.

c. Do a CV_MOP OPEN on the image to further clean up noise.

Create a clean mask from noise. After completing exercise 5, continue by keeping
only the largest remaining shape in the image. Set a pointer to the upper left of the
image and then traverse the image. When you find a pixel of value 255 (“on”), store
the location and then flood fill it using a value of 100. Read the connected component
returned from flood fill and record the area of filled region. If there is another larger
region in the image, then flood fill the smaller region using a value of 0 and delete
its recorded area. If the new region is larger than the previous region, then flood fill
the previous region using the value 0 and delete its location. Finally, fill the remain-
ing largest region with 255. Display the results. We now have a single, solid mask for
the coffee mug.

For this exercise, use the mask created in exercise 6 or create another mask of your
own (perhaps by drawing a digital picture, or simply use a square). Load an outdoor
scene. Now use this mask with cvCopy(), to copy an image of a mug into the scene.

. Create a low-variance random image (use a random number call such that the

numbers don’t differ by much more than 3 and most numbers are near 0). Load the
image into a drawing program such as PowerPoint and then draw a wheel of lines
meeting at a single point. Use bilateral filtering on the resulting image and explain
the results.

Load an image of a scene and convert it to grayscale.

a. Run the morphological Top Hat operation on your image and display the
results.

b. Convert the resulting image into an 8-bit mask.
c. Copy a grayscale value into the Top Hat pieces and display the results.

Load an image with many details.
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a. Use cvResize() to reduce the image by a factor of 2 in each dimension (hence
the image will be reduced by a factor of 4). Do this three times and display the
results.

b. Now take the original image and use cvPyrDown() to reduce it three times and
then display the results.

c. How are the two results different? Why are the approaches different?
Load an image of a scene. Use cvPyrSegmentation() and display the results.

Load an image of an interesting or sufficiently “rich” scene. Using cvThreshold(),
set the threshold to 128. Use each setting type in Table 5-5 on the image and display
the results. You should familiarize yourself with thresholding functions because
they will prove quite useful.

a. Repeat the exercise but use cvAdaptiveThreshold() instead. Set parami=5.

b. Repeat part a using parami=0 and then parami=-5.
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CHAPTER 6
Image Transforms

Overview

In the previous chapter we covered a lot of different things you could do with an image.
The majority of the operators presented thus far are used to enhance, modify, or other-
wise “process” one image into a similar but new image.

In this chapter we will look at image transforms, which are methods for changing an
image into an alternate representation of the data entirely. Perhaps the most common
example of a transform would be a something like a Fourier transform, in which the im-
age is converted to an alternate representation of the data in the original image. The re-
sult of this operation is still stored in an OpenCV “image” structure, but the individual
“pixels” in this new image represent spectral components of the original input rather
than the spatial components we are used to thinking about.

There are a number of useful transforms that arise repeatedly in computer vision.
OpenCV provides complete implementations of some of the more common ones as well
as building blocks to help you implement your own image transforms.

Convolution

Convolution is the basis of many of the transformations that we discuss in this chapter.
In the abstract, this term means something we do to every part of an image. In this
sense, many of the operations we looked at in Chapter 5 can also be understood as spe-
cial cases of the more general process of convolution. What a particular convolution
“does” is determined by the form of the Convolution kernel being used. This kernel is
essentially just a fixed size array of numerical coefficients along with an anchor point
in that array, which is typically located at the center. The size of the array* is called the
support of the kernel.

Figure 6-1 depicts a 3-by-3 convolution kernel with the anchor located at the center of

the array. The value of the convolution at a particular point is computed by first placing

* For technical purists, the support of the kernel actually consists of only the nonzero portion of the kernel
array.
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the kernel anchor on top of a pixel on the image with the rest of the kernel overlaying
the corresponding local pixels in the image. For each kernel point, we now have a value
for the kernel at that point and a value for the image at the corresponding image point.
We multiply these together and sum the result; this result is then placed in the resulting
image at the location corresponding to the location of the anchor in the input image.
This process is repeated for every point in the image by scanning the kernel over the
entire image.

1 2 1
2 || 2
1 2 1

Figure 6-1. A 3-by-3 kernel for a Sobel derivative; note that the anchor point is in the center of the
kernel

We can, of course, express this procedure in the form of an equation. If we define the
image to be I(x, y), the kernel to be G(j, j) (where 0 <i < M; -1 and 0 < j < M; -1), and the
anchor point to be located at (a;, @) in the coordinates of the kernel, then the convolu-
tion H(x, ) is defined by the following expression:

MM

H(x,y)= z 2 I(x+i-a,y+j—a,)G(, )

=0 j=0

Observe that the number of operations, at least at first glance, seems to be the number
of pixels in the image multiplied by the number of pixels in the kernel.* This can be a lot
of computation and so is not something you want to do with some “for” loop and a lot of
pointer de-referencing. In situations like this, it is better to let OpenCV do the work for
you and take advantage of the optimizations already programmed into OpenCV. The
OpenCV way to do this is with cvFilter2D():

void cvFilter2D(

const CvArr* src,
CvATT* dst,
const CvMat* kernel,

* We say “at first glance” because it is also possible to perform convolutions in the frequency domain. In this
case, for an N-by-N image and an M-by-M kernel with N > M, the computational time will be proportional
to N? log(N) and not to the N>M? that is expected for computations in the spatial domain. Because the
frequency domain computation is independent of the size of the kernel, it is more efficient for large kernels.
OpenCV automatically decides whether to do the convolution in the frequency domain based on the size of
the kernel.
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CvPoint anchor = cvPoint(-1,-1)
);
Here we create a matrix of the appropriate size, fill it with the coefficients, and then
pass it together with the source and destination images into cvFilter2D(). We can also
optionally pass in a CvPoint to indicate the location of the center of the kernel, but the
default value (equal to cvPoint(-1,-1)) is interpreted as indicating the center of the ker-
nel. The kernel can be of even size if its anchor point is defined; otherwise, it should be
of odd size.

The src and dst images should be the same size. One might think that the src image
should be larger than the dst image in order to allow for the extra width and length
of the convolution kernel. But the sizes of the src and dst can be the same in OpenCV
because, by default, prior to convolution OpenCV creates virtual pixels via replication
past the border of the src image so that the border pixels in dst can be filled in. The rep-
lication is done as input(-dx, y) = input(0, y), input(w + dx, y) = input(w - 1, ), and so
forth. There are some alternatives to this default behavior; we will discuss them in the
next section.

We remark that the coefficients of the convolution kernel should always be floating-
point numbers. This means that you should use CV_32FC1 when allocating that matrix.

Convolution Boundaries

One problem that naturally arises with convolutions is how to handle the boundaries.
For example, when using the convolution kernel just described, what happens when the
point being convolved is at the edge of the image? Most of OpenCV’s built-in functions
that make use of cvFilter2d() must handle this in one way or another. Similarly, when
doing your own convolutions, you will need to know how to deal with this efficiently.

The solution comes in the form of the cvCopyMakeBorder() function, which copies a given
image onto another slightly larger image and then automatically pads the boundary in
one way or another:

void cvCopyMakeBorder(
const CvArr*  src,

CvArT* dst,

CvPoint offset,

int bordertype,

CvScalar value = cvScalarAll(o)

);
The offset argument tells cvCopyMakeBorder() where to place the copy of the original
image within the destination image. Typically, if the kernel is N-by-N (for odd N) then
you will want a boundary that is (N - 1)/2 wide on all sides or, equivalently, an image
that is N - 1 wider and taller than the original. In this case you would set the offset to
cvPoint((N-1)/2,(N-1)/2) so that the boundary would be even on all sides.*

* Of course, the case of N-by-N with N odd and the anchor located at the center is the simplest case. In gen-
eral, if the kernel is N-by-M and the anchor is located at (a,, a,), then the destination image will have to be
N -1 pixels wider and M - 1 pixels taller than the source image. The offset will simply be (a,, a,).
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Thebordertype canbe either IPL_BORDER_CONSTANT or IPL_BORDER_REPLICATE (see Figure 6-2).
In the first case, the value argument will be interpreted as the value to which all pixels
in the boundary should be set. In the second case, the row or column at the very edge of
the original is replicated out to the edge of the larger image. Note that the border of the
test pattern image is somewhat subtle (examine the upper right image in Figure 6-2); in
the test pattern image, there’s a one-pixel-wide dark border except where the circle pat-
terns come near the border where it turns white. There are two other border types de-
fined, IPL_BORDER REFLECT and IPL_BORDER WRAP, which are not implemented at this time
in OpenCV but may be supported in the future.

(Y [ S

—

Figure 6-2. Expanding the image border. The left column shows IPL_BORDER_CONSTANT where a
zero value is used to fill out the borders. The right column shows IPL_BORDER_REPLICATE where
the border pixels are replicated in the horizontal and vertical directions

We mentioned previously that, when you make calls to OpenCV library functions that
employ convolution, those library functions call cvCopyMakeBorder() to get their work
done. In most cases the border type called is IPL_BORDER_REPLICATE, but sometimes you
will not want it to be done that way. This is another occasion where you might want to
use cvCopyMakeBorder(). You can create a slightly larger image with the border you want,
call whatever routine on that image, and then clip back out the part you were originally
interested in. This way, OpenCV’s automatic bordering will not affect the pixels you
care about.

Convolution | 147



Gradients and Sobel Derivatives

One of the most basic and important convolutions is the computation of derivatives (or
approximations to them). There are many ways to do this, but only a few are well suited
to a given situation.

In general, the most common operator used to represent differentiation is the Sobel de-
rivative [Sobel68] operator (see Figures 6-3 and 6-4). Sobel operators exist for any order
of derivative as well as for mixed partial derivatives (e.g., 9°/dxdy).

Figure 6-3. The effect of the Sobel operator when used to approximate a first derivative in the
x-dimension

cvSobel(
const CvArr* src,
CvATT* dst,
int xorder,
int yorder,
int aperture_size = 3

);
Here, src and dst are your image input and output, and xorder and yorder are the orders
of the derivative. Typically you’ll use 0, 1, or at most 2; a 0 value indicates no derivative
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Figure 6-4. The effect of the Sobel operator when used to approximate a first derivative in the
y-dimension

in that direction.* The aperture size parameter should be odd and is the width (and the
height) of the square filter. Currently, aperture sizes of 1, 3, 5, and 7 are supported. If
src is 8-bit then the dst must be of depth IPL_DEPTH_16S to avoid overflow.

Sobel derivatives have the nice property that they can be defined for kernels of any
size, and those kernels can be constructed quickly and iteratively. The larger kernels
give a better approximation to the derivative because the smaller kernels are very sen-
sitive to noise.

To understand this more exactly, we must realize that a Sobel derivative is not really a
derivative at all. This is because the Sobel operator is defined on a discrete space. What
the Sobel operator actually represents is a fit to a polynomial. That is, the Sobel deriva-
tive of second order in the x-direction is not really a second derivative; it is a local fit to a
parabolic function. This explains why one might want to use a larger kernel: that larger
kernel is computing the fit over a larger number of pixels.

* Either xorder or yorder must be nonzero.

Gradients and Sobel Derivatives | 149



Scharr Filter

In fact, there are many ways to approximate a derivative in the case of a discrete grid.
The downside of the approximation used for the Sobel operator is that it is less accurate
for small kernels. For large kernels, where more points are used in the approximation,
this problem is less significant. This inaccuracy does not show up directly for the X and
Y filters used in cvSobel(), because they are exactly aligned with the x- and y-axes. The
difficulty arises when you want to make image measurements that are approximations
of directional derivatives (i.e., direction of the image gradient by using the arctangent of
the y/x filter responses).

To put this in context, a concrete example of where you may want image measurements
of this kind would be in the process of collecting shape information from an object
by assembling a histogram of gradient angles around the object. Such a histogram is
the basis on which many common shape classifiers are trained and operated. In this
case, inaccurate measures of gradient angle will decrease the recognition performance
of the classifier.

For a 3-by-3 Sobel filter, the inaccuracies are more apparent the further the gradient angle
is from horizontal or vertical. OpenCV addresses this inaccuracy for small (but fast)
3-by-3 Sobel derivative filters by a somewhat obscure use of the special aperture size
value CV_SCHARR in the cvSobel() function. The Scharr filter is just as fast but more ac-
curate than the Sobel filter, so it should always be used if you want to make image mea-
surements using a 3-by-3 filter. The filter coeflicients for the Scharr filter are shown in
Figure 6-5 [Scharr00].

-3 0 3 -3 -10 -3
-10 0 10 0 0 0
-3 0 3 3 10 3

Figure 6-5. The 3-by-3 Scharr filter using flag CV_SHARR

Laplace

The OpenCV Laplacian function (first used in vision by Marr [Marr82]) implements a
discrete analog of the Laplacian operator:*

* Note that the Laplacian operator is completely distinct from the Laplacian pyramid of Chapter 5.
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Because the Laplacian operator can be defined in terms of second derivatives, you might
well suppose that the discrete implementation works something like the second-order
Sobel derivative. Indeed it does, and in fact the OpenCV implementation of the Lapla-
cian operator uses the Sobel operators directly in its computation.
void cvLaplace(
const CvArr* src,
CvATT* dst,
int apertureSize = 3
);
The cvLaplace() function takes the usual source and destination images as arguments as
well as an aperture size. The source can be either an 8-bit (unsigned) image or a 32-bit
(floating-point) image. The destination must be a 16-bit (signed) image or a 32-bit (float-
ing-point) image. This aperture is precisely the same as the aperture appearing in the
Sobel derivatives and, in effect, gives the size of the region over which the pixels are
sampled in the computation of the second derivatives.

The Laplace operator can be used in a variety of contexts. A common application is to
detect “blobs.” Recall that the form of the Laplacian operator is a sum of second de-
rivatives along the x-axis and y-axis. This means that a single point or any small blob
(smaller than the aperture) that is surrounded by higher values will tend to maximize
this function. Conversely, a point or small blob that is surrounded by lower values will
tend to maximize the negative of this function.

With this in mind, the Laplace operator can also be used as a kind of edge detector. To
see how this is done, consider the first derivative of a function, which will (of course)
be large wherever the function is changing rapidly. Equally important, it will grow rap-
idly as we approach an edge-like discontinuity and shrink rapidly as we move past the
discontinuity. Hence the derivative will be at a local maximum somewhere within this
range. Therefore we can look to the Os of the second derivative for locations of such local
maxima. Got that? Edges in the original image will be Os of the Laplacian. Unfortu-
nately, both substantial and less meaningful edges will be Os of the Laplacian, but this is
not a problem because we can simply filter out those pixels that also have larger values
of the first (Sobel) derivative. Figure 6-6 shows an example of using a Laplacian on an
image together with details of the first and second derivatives and their zero crossings.

Canny

The method just described for finding edges was further refined by J. Canny in 1986 into
what is now commonly called the Canny edge detector [Canny86]. One of the differences
between the Canny algorithm and the simpler, Laplace-based algorithm from the previ-
ous section is that, in the Canny algorithm, the first derivatives are computed in x and y
and then combined into four directional derivatives. The points where these directional
derivatives are local maxima are then candidates for assembling into edges.
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Figure 6-6. Laplace transform (upper right) of the racecar image: zooming in on the tire (circled in
white) and considering only the x-dimension, we show a (qualitative) representation of the bright-
ness as well as the first and second derivative (lower three cells); the Os in the second derivative corre-
spond to edges, and the 0 corresponding to a large first derivative is a strong edge

However, the most significant new dimension to the Canny algorithm is that it tries to
assemble the individual edge candidate pixels into contours.* These contours are formed
by applying an hysteresis threshold to the pixels. This means that there are two thresh-
olds, an upper and a lower. If a pixel has a gradient larger than the upper threshold,
then it is accepted as an edge pixel; if a pixel is below the lower threshold, it is rejected.
If the pixel’s gradient is between the thresholds, then it will be accepted only if it is
connected to a pixel that is above the high threshold. Canny recommended a ratio of
high:low threshold between 2:1 and 3:1. Figures 6-7 and 6-8 show the results of applying
cvCanny() to a test pattern and a photograph using high:low hysteresis threshold ratios
of 5:1 and 3:2, respectively.

void cvCanny(
const CvArr* img,

CvArT* edges,

double IowThresh,
double highThresh,

int apertureSize = 3

* We’ll have much more to say about contours later. As you await those revelations, though, keep in mind that
the cvCanny() routine does not actually return objects of type CvContour; we will have to build those from
the output of cvCanny() if we want them by using cvFindContours(). Everything you ever wanted to know
about contours will be covered in Chapter 8.
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Figure 6-7. Results of Canny edge detection for two different images when the high and low thresh-
olds are set to 50 and 10, respectively

The cvCanny() function expects an input image, which must be grayscale, and an output
image, which must also be grayscale (but which will actually be a Boolean image). The
next two arguments are the low and high thresholds, and the last argument is another
aperture. As usual, this is the aperture used by the Sobel derivative operators that are
called inside of the implementation of cvCanny().

Hough Transforms

The Hough transform* is a method for finding lines, circles, or other simple forms in an
image. The original Hough transform was a line transform, which is a relatively fast way
of searching a binary image for straight lines. The transform can be further generalized
to cases other than just simple lines.

Hough Line Transform

The basic theory of the Hough line transform is that any point in a binary image could
be part of some set of possible lines. If we parameterize each line by, for example, a

* Hough developed the transform for use in physics experiments [Hough59]; its use in vision was introduced
by Duda and Hart [Duda72].
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Figure 6-8. Results of Canny edge detection for two different images when the high and low thresh-
olds are set to 150 and 100, respectively

slope a and an intercept b, then a point in the original image is transformed to a locus
of points in the (a, b) plane corresponding to all of the lines passing through that point
(see Figure 6-9). If we convert every nonzero pixel in the input image into such a set of
points in the output image and sum over all such contributions, then lines that appear
in the input (i.e., (x, y) plane) image will appear as local maxima in the output (i.e.,
(a, b) plane) image. Because we are summing the contributions from each point, the
(a, b) plane is commonly called the accumulator plane.

It might occur to you that the slope-intercept form is not really the best way to repre-
sent all of the lines passing through a point (because of the considerably different den-
sity of lines as a function of the slope, and the related fact that the interval of possible
slopes goes from —eo to +oo). It is for this reason that the actual parameterization of the
transform image used in numerical computation is somewhat different. The preferred
parameterization represents each line as a point in polar coordinates (p, 8), with the
implied line being the line passing through the indicated point but perpendicular to the
radial from the origin to that point (see Figure 6-10). The equation for such a line is:

p=xcosO+ ysinf
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Figure 6-9. The Hough line transform finds many lines in each image; some of the lines found are
expected, but others may not be
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Figure 6-10. A point (x,, y,) in the image plane (panel a) implies many lines each parameterized by
a different p and 0 (panel b); these lines each imply points in the (p, 0) plane, which taken together
form a curve of characteristic shape (panel c)
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The OpenCV Hough transform algorithm does not make this computation explicit
to the user. Instead, it simply returns the local maxima in the (p, 6) plane. However,
you will need to understand this process in order to understand the arguments to the
OpenCV Hough line transform function.

OpenCV supports two different kinds of Hough line transform: the standard Hough
transform (SHT) [Duda72] and the progressive probabilistic Hough transform (PPHT).*
The SHT is the algorithm we just looked at. The PPHT is a variation of this algorithm
that, among other things, computes an extent for individual lines in addition to the
orientation (as shown in Figure 6-11). It is “probabilistic” because, rather than accu-
mulating every possible point in the accumulator plane, it accumulates only a fraction
of them. The idea is that if the peak is going to be high enough anyhow, then hitting it
only a fraction of the time will be enough to find it; the result of this conjecture can be
a substantial reduction in computation time. Both of these algorithms are accessed with
the same OpenCV function, though the meanings of some of the arguments depend on
which method is being used.
CvSeq* cvHoughLines2(

CvArr* image,

void* line storage,

int method,

double rho,

double theta,

int threshold,

double paraml

double param2

);

The first argument is the input image. It must be an 8-bit image, but the input is treated
as binary information (i.e., all nonzero pixels are considered to be equivalent). The sec-
ond argument is a pointer to a place where the results can be stored, which can be either
a memory storage (see CvMemoryStorage in Chapter 8) or a plain N-by-1 matrix array (the
number of rows, N, will serve to limit the maximum number of lines returned). The
next argument, method, can be CV_HOUGH_STANDARD, CV_HOUGH_PROBABILISTIC, or CV_HOUGH
MULTI_SCALE for (respectively) SHT, PPHT, or a multiscale variant of SHT.

n I
o O
-

The next two arguments, rho and theta, set the resolution desired for the lines (i.e., the
resolution of the accumulator plane). The units of rho are pixels and the units of theta
are radians; thus, the accumulator plane can be thought of as a two-dimensional his-
togram with cells of dimension rho pixels by theta radians. The threshold value is the
value in the accumulator plane that must be reached for the routine to report a line.
This last argument is a bit tricky in practice; it is not normalized, so you should expect
to scale it up with the image size for SHT. Remember that this argument is, in effect,
indicating the number of points (in the edge image) that must support the line for the
line to be returned.

* The “probablistic Hough transform” (PHT) was introduced by Kiryati, Eldar, and Bruckshtein in 1991
[Kiryati9l]; the PPHT was introduced by Matas, Galambosy, and Kittler in 1999 [Matas00].
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Figure 6-11. The Canny edge detector (paramI=>50, param2=150) is run first, with the results shown
in gray, and the progressive probabilistic Hough transform (paramI1=>50, param2=10) is run next,
with the results overlayed in white; you can see that the strong lines are generally picked up by the
Hough transform

The paraml and param2 arguments are not used by the SHT. For the PPHT, param1 sets
the minimum length of a line segment that will be returned, and param2 sets the sep-
aration between collinear segments required for the algorithm not to join them into
a single longer segment. For the multiscale HT, the two parameters are used to indi-
cate higher resolutions to which the parameters for the lines should be computed. The
multiscale HT first computes the locations of the lines to the accuracy given by the rho
and theta parameters and then goes on to refine those results by a factor of param1 and
param2, respectively (i.e., the final resolution in rho is rho divided by param1 and the final
resolution in theta is theta divided by param2).

What the function returns depends on how it was called. If the line storage value was
a matrix array, then the actual return value will be NULL. In this case, the matrix should
be of type CV_32FC2 if the SHT or multi-scale HT is being used and should be Cv_325C4 if
the PPHT is being used. In the first two cases, the p- and 0-values for each line will be
placed in the two channels of the array. In the case of the PPHT, the four channels will
hold the x- and y-values of the start and endpoints of the returned segments. In all of
these cases, the number of rows in the array will be updated by cvHoughLines2() to cor-
rectly reflect the number of lines returned.
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If the line_storage value was a pointer to a memory store,* then the return value will
be a pointer to a CvSeq sequence structure. In that case, you can get each line or line seg-
ment from the sequence with a command like
float* line = (float*) cvGetSeqElem( lines , i );

where lines is the return value from cvHoughLines2() and i is index of the line of inter-
est. In this case, line will be a pointer to the data for that line, with 1ine[0] and 1ine[1]
being the floating-point values p and 6 (for SHT and MSHT) or CvPoint structures for
the endpoints of the segments (for PPHT).

Hough Circle Transform

The Hough circle transform [Kimme75] (see Figure 6-12) works in a manner roughly
analogous to the Hough line transforms just described. The reason it is only “roughly”
is that—if one were to try doing the exactly analogous thing—the accumulator plane
would have to be replaced with an accumulator volume with three dimensions: one for
x, one for y, and another for the circle radius r. This would mean far greater memory
requirements and much slower speed. The implementation of the circle transform
in OpenCV avoids this problem by using a somewhat more tricky method called the
Hough gradient method.

The Hough gradient method works as follows. First the image is passed through an edge
detection phase (in this case, cvCanny()). Next, for every nonzero point in the edge image,
the local gradient is considered (the gradient is computed by first computing the first-
order Sobel x- and y-derivatives via cvSobel()). Using this gradient, every point along
the line indicated by this slope—from a specified minimum to a specified maximum
distance—is incremented in the accumulator. At the same time, the location of every
one of these nonzero pixels in the edge image is noted. The candidate centers are then
selected from those points in this (two-dimensional) accumulator that are both above
some given threshold and larger than all of their immediate neighbors. These candidate
centers are sorted in descending order of their accumulator values, so that the centers
with the most supporting pixels appear first. Next, for each center, all of the nonzero
pixels (recall that this list was built earlier) are considered. These pixels are sorted ac-
cording to their distance from the center. Working out from the smallest distances to
the maximum radius, a single radius is selected that is best supported by the nonzero
pixels. A center is kept if it has sufficient support from the nonzero pixels in the edge
image and if it is a sufficient distance from any previously selected center.

This implementation enables the algorithm to run much faster and, perhaps more im-
portantly, helps overcome the problem of the otherwise sparse population of a three-
dimensional accumulator, which would lead to a lot of noise and render the results
unstable. On the other hand, this algorithm has several shortcomings that you should
be aware of.

* We have not yet introduced the concept of a memory store or a sequence, but Chapter 8 is devoted to this
topic.
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Figure 6-12. The Hough circle transform finds some of the circles in the test pattern and (correctly)
finds none in the photograph

First, the use of the Sobel derivatives to compute the local gradient—and the attendant
assumption that this can be considered equivalent to a local tangent—is not a numeri-
cally stable proposition. It might be true “most of the time,” but you should expect this
to generate some noise in the output.

Second, the entire set of nonzero pixels in the edge image is considered for every can-
didate center; hence, if you make the accumulator threshold too low, the algorithm will
take a long time to run. Third, because only one circle is selected for every center, if
there are concentric circles then you will get only one of them.

Finally, because centers are considered in ascending order of their associated accu-
mulator value and because new centers are not kept if they are too close to previously
accepted centers, there is a bias toward keeping the larger circles when multiple circles
are concentric or approximately concentric. (It is only a “bias” because of the noise
arising from the Sobel derivatives; in a smooth image at infinite resolution, it would
be a certainty.)

With all of that in mind, let’s move on to the OpenCV routine that does all this for us:

CvSeq* cvHoughCircles(
CvArr* image,
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void* circle storage,
int method,

double dp,

double min dist,

double parami = 100,
double param2 = 300,

int min_radius = 0,
int max_radius = 0
);

The Hough circle transform function cvHoughCircles() has similar arguments to the
line transform. The input image is again an 8-bit image. One significant difference be-
tween cvHoughCircles() and cvHoughLines2() is that the latter requires a binary image.
The cvHoughCircles() function will internally (automatically) call cvSobel()* for you, so
you can provide a more general grayscale image.

The circle storage can be either an array or memory storage, depending on how you
would like the results returned. If an array is used, it should be a single column of type
CV_32FC3; the three channels will be used to encode the location of the circle and its
radius. If memory storage is used, then the circles will be made into an OpenCV se-
quence and a pointer to that sequence will be returned by cvHoughCircles(). (Given an
array pointer value for circle storage, the return value of cvHoughCircles() is NULL.) The
method argument must always be set to CV_HOUGH_GRADIENT.

The parameter dp is the resolution of the accumulator image used. This parameter allows
us to create an accumulator of a lower resolution than the input image. (It makes sense
to do this because there is no reason to expect the circles that exist in the image to fall
naturally into the same number of categories as the width or height of the image itself.)
If dp is set to 1 then the resolutions will be the same; if set to a larger number (e.g., 2),
then the accumulator resolution will be smaller by that factor (in this case, half). The
value of dp cannot be less than 1.

The parameter min dist is the minimum distance that must exist between two circles in
order for the algorithm to consider them distinct circles.

For the (currently required) case of the method being set to CV_HOUGH_GRADIENT, the next
two arguments, paraml and param2, are the edge (Canny) threshold and the accumula-
tor threshold, respectively. You may recall that the Canny edge detector actually takes
two different thresholds itself. When cvCanny() is called internally, the first (higher)
threshold is set to the value of parami passed into cvHoughCircles(), and the second
(lower) threshold is set to exactly half that value. The parameter param2 is the one used
to threshold the accumulator and is exactly analogous to the threshold argument of
cvHoughLines().

The final two parameters are the minimum and maximum radius of circles that can be
found. This means that these are the radii of circles for which the accumulator has a rep-
resentation. Example 6-1 shows an example program using cvHoughCircles().

* The function cvSobel(), not cvCanny(), is called internally. The reason is that cvHoughCircles() needs to
estimate the orientation of a gradient at each pixel, and this is difficult to do with binary edge map.
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Example 6-1. Using cvHoughCircles to return a sequence of circles found in a grayscale image

#include <cv.h>
#include <highgui.h>
#include <math.h>

int main(int argc, char** argv) {
IplImage* image = cvLoadImage(
argv([1],
CV_LOAD_IMAGE_GRAYSCALE
);

CvMemStorage* storage = cvCreateMemStorage(0);
cvSmooth(image, image, CV_GAUSSIAN, 5, 5 );
CvSeq* results = cvHoughCircles(

image,

storage,

CV_HOUGH_GRADIENT,

2,
image->width/10

)

for( int i = 0; i < results->total; i++ ) {
float* p = (float*) cvGetSeqElem( results, i );
CvPoint pt = cvPoint( cvRound( p[0] ), cvRound( p[1] ) );
cvCircle(

image,

pt,

cvRound( p[2] ),

CV_RGB(0oxff,0xff,0xff)

);
}

cvNamedWindow( “cvHoughCircles”, 1 );
cvShowImage( “cvHoughCircles”, image);
cviaitKey(0);

}

It is worth reflecting momentarily on the fact that, no matter what tricks we employ,
there is no getting around the requirement that circles be described by three degrees
of freedom (x, y, and r), in contrast to only two degrees of freedom (p and ) for lines.
The result will invariably be that any circle-finding algorithm requires more memory
and computation time than the line-finding algorithms we looked at previously. With
this in mind, it’s a good idea to bound the radius parameter as tightly as circumstances
allow in order to keep these costs under control.* The Hough transform was extended
to arbitrary shapes by Ballard in 1981 [Ballard81] basically by considering objects as col-
lections of gradient edges.

* Although cvHoughCircles() catches centers of the circles quite well, it sometimes fails to find the correct
radius. Therefore, in an application where only a center must be found (or where some different technique
can be used to find the actual radius), the radius returned by cvHoughCircles() can be ignored.
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Remap

Under the hood, many of the transformations to follow have a certain common element.
In particular, they will be taking pixels from one place in the image and mapping them
to another place. In this case, there will always be some smooth mapping, which will do
what we need, but it will not always be a one-to-one pixel correspondence.

We sometimes want to accomplish this interpolation programmatically; that is, we’d
like to apply some known algorithm that will determine the mapping. In other cases,
however, we’d like to do this mapping ourselves. Before diving into some methods that
will compute (and apply) these mappings for us, let’s take a moment to look at the func-
tion responsible for applying the mappings that these other methods rely upon. The
OpenCV function we want is called cvRemap():
void cvRemap(

const CvArr* src,

CvATT* dst,

const CvArr* mapx,

const CvArr* mapy,

int flags = CV_INTER LINEAR | CV_WARP_FILL OUTLIERS,
CvScalar fillval = cvScalarAll(0)

);

The first two arguments of cvRemap() are the source and destination images, respec-
tively. Obviously, these should be of the same size and number of channels, but they
can have any data type. It is important to note that the two may not be the same image.*
The next two arguments, mapx and mapy, indicate where any particular pixel is to be re-
located. These should be the same size as the source and destination images, but they
are single-channel and usually of data type float (IPL_DEPTH_32F). Noninteger mappings
are OK, and cvRemap() will do the interpolation calculations for you automatically. One
common use of cvRemap() is to rectify (correct distortions in) calibrated and stereo im-
ages. We will see functions in Chapters 11 and 12 that convert calculated camera distor-
tions and alignments into mapx and mapy parameters. The next argument contains flags
that tell cvRemap() exactly how that interpolation is to be done. Any one of the values
listed in Table 6-1 will work.

Table 6-1. cvWarpAffine() additional flags values

flags values Meaning
CV_INTER_NN Nearest neighbor
CV_INTER_LINEAR Bilinear (default)
CV_INTER_AREA Pixel area resampling
CV_INTER_CUBIC Bicubic interpolation

* A moment’s thought will make it clear why the most efficient remapping strategy is incompatible with writ-
ing onto the source image. After all, if you move pixel A to location B then, when you get to location B and
want to move it to location C, you will find that you’ve already written over the original value of B with A!

162 | Chapter6: Image Transforms



Interpolation is an important issue here. Pixels in the source image sit on an integer grid;
for example, we can refer to a pixel at location (20, 17). When these integer locations
are mapped to a new image, there can be gaps—either because the integer source pixel
locations are mapped to float locations in the destination image and must be rounded
to the nearest integer pixel location or because there are some locations to which no
pixels at all are mapped (think about doubling the image size by stretching it; then ev-
ery other destination pixel would be left blank). These problems are generally referred
to as forward projection problems. To deal with such rounding problems and destina-
tion gaps, we actually solve the problem backwards: we step through each pixel of the
destination image and ask, “Which pixels in the source are needed to fill in this des-
tination pixel?” These source pixels will almost always be on fractional pixel locations
so we must interpolate the source pixels to derive the correct value for our destination
value. The default method is bilinear interpolation, but you may choose other methods
(as shown in Table 6-1).

You may also add (using the OR operator) the flag CV WARP FILL OUTLIERS, whose effect
is to fill pixels in the destination image that are not the destination of any pixel in the
input image with the value indicated by the final argument fillval. In this way, if you
map all of your image to a circle in the center then the outside of that circle would auto-
matically be filled with black (or any other color that you fancy).

Stretch, Shrink, Warp, and Rotate

In this section we turn to geometric manipulations of images.* Such manipulations in-
clude stretching in various ways, which includes both uniform and nonuniform resizing
(the latter is known as warping). There are many reasons to perform these operations:
for example, warping and rotating an image so that it can be superimposed on a wall in
an existing scene, or artificially enlarging a set of training images used for object recog-
nition.T The functions that can stretch, shrink, warp, and/or rotate an image are called
geometric transforms (for an early exposition, see [Semple79]). For planar areas, there
are two flavors of geometric transforms: transforms that use a 2-by-3 matrix, which are
called affine transforms; and transforms based on a 3-by-3 matrix, which are called per-
spective transforms or homographies. You can think of the latter transformation as a
method for computing the way in which a plane in three dimensions is perceived by a
particular observer, who might not be looking straight on at that plane.

An affine transformation is any transformation that can be expressed in the form of a
matrix multiplication followed by a vector addition. In OpenCV the standard style of
representing such a transformation is as a 2-by-3 matrix. We define:

* We will cover these transformations in detail here; we will return to them when we discuss (in Chapter 11)
how they can be used in the context of three-dimensional vision techniques.

+ This activity might seem a bit dodgy; after all, wouldn’t it be better just to use a recognition method that’s
invariant to local affine distortions? Nonetheless, this method has a long history and still can be quite useful
in practice.
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It is easily seen that the effect of the affine transformation A * X + B is exactly equivalent
to extending the vector X into the vector X" and simply left-multiplying X" by T.

Affine transformations can be visualized as follows. Any parallelogram ABCD in a
plane can be mapped to any other parallelogram AB'C'D’ by some affine transforma-
tion. If the areas of these parallelograms are nonzero, then the implied affine transfor-
mation is defined uniquely by (three vertices of) the two parallelograms. If you like, you
can think of an affine transformation as drawing your image into a big rubber sheet and
then deforming the sheet by pushing or pulling* on the corners to make different kinds
of parallelograms.

When we have multiple images that we know to be slightly different views of the same
object, we might want to compute the actual transforms that relate the different views.
In this case, affine transformations are often used to model the views because, having
fewer parameters, they are easier to solve for. The downside is that true perspective
distortions can only be modeled by a homography,' so affine transforms yield a repre-
sentation that cannot accommodate all possible relationships between the views. On the
other hand, for small changes in viewpoint the resulting distortion is affine, so in some
circumstances an affine transformation may be sufficient.

Affine transforms can convert rectangles to parallelograms. They can squash the shape
but must keep the sides parallel; they can rotate it and/or scale it. Perspective transfor-
mations offer more flexibility; a perspective transform can turn a rectangle into a trap-
ezoid. Of course, since parallelograms are also trapezoids, affine transformations are a
subset of perspective transformations. Figure 6-13 shows examples of various affine and
perspective transformations.

Affine Transform

There are two situations that arise when working with affine transformations. In the first
case, we have an image (or a region of interest) we’d like to transform; in the second case,
we have a list of points for which we’d like to compute the result of a transformation.

Dense affine transformations

In the first case, the obvious input and output formats are images, and the implicit
requirement is that the warping assumes the pixels are a dense representation of the

* One can even pull in such a manner as to invert the parallelogram.

t “Homography” is the mathematical term for mapping points on one surface to points on another. In this
sense it is a more general term than as used here. In the context of computer vision, homography almost
always refers to mapping between points on two image planes that correspond to the same location on
a planar object in the real world. It can be shown that such a mapping is representable by a single 3-by-3
orthogonal matrix (more on this in Chapter 11).
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Figure 6-13. Affine and perspective transformations

underlying image. This means that image warping must necessarily handle interpola-
tions so that the output images are smooth and look natural. The affine transformation
function provided by OpenCV for dense transformations is cviarpAffine().

void cviWarpAffine(
const CvArr* src,

CvArT* dst,

const CvMat* map matrix,

int flags = CV_INTER_LINEAR | CV_WARP FILL OUTLIERS,
CvScalar fillval = cvScalarAll(o)

);
Here src and dst refer to an array or image, which can be either one or three channels
and of any type (provided they are the same type and size).* The map_matrix is the 2-by-3
matrix we introduced earlier that quantifies the desired transformation. The next-to-
last argument, flags, controls the interpolation method as well as either or both of the
following additional options (as usual, combine with Boolean OR).

CV_WARP FILL OUTLIERS

Often, the transformed src image does not fit neatly into the dst image—there are
pixels “mapped” there from the source file that don’t actually exist. If this flag is set,
then those missing values are filled with fillval (described previously).

CV_WARP_INVERSE_MAP

This flag is for convenience to allow inverse warping from dst to src instead of from
src to dst.

* Since rotating an image will usually make its bounding box larger, the result will be a clipped image. You
can circumvent this either by shrinking the image (as in the example code) or by copying the first image to a
central ROI within a larger source image prior to transformation.
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cVWarpAffine performance

It is worth knowing that cvWarpAffine() involves substantial associated overhead.
An alternative is to use cvGetQuadrangleSubPix(). This function has fewer options but
several advantages. In particular, it has less overhead and can handle the special case
of when the source image is 8-bit and the destination image is a 32-bit floating-point
image. It will also handle multichannel images.
void cvGetQuadrangleSubPix(
const CvArr* src,

CvATT* dst,
const CvMat* map _matrix

);
What cvGetQuadrangleSubPix() does is compute all the points in dst by mapping
them (with interpolation) from the points in src that were computed by applying the
affine transformation implied by multiplication by the 2-by-3 map matrix. (Conver-
sion of the locations in dst to homogeneous coordinates for the multiplication is done
automatically.)

One idiosyncrasy of cvGetQuadrangleSubPix() is that there is an additional mapping ap-
plied by the function. In particular, the result points in dst are computed according to
the formula:

dst(x, y)=src(ayx"+a, y"+b,, a,x"+a, y"+b,)

where:

. (width(dst)-1)

M = aOO aOl bO and x" — 2
™ la  a. b y” y_(height(dst)—l)

2

Observe that the mapping from (x, ) to (x”, ") has the effect that—even if the map-
ping M is an identity mapping—the points in the destination image at the center will
be taken from the source image at the origin. If cvGetQuadrangleSubPix() needs points
from outside the image, it uses replication to reconstruct those values.

Computing the affine map matrix

OpenCV provides two functions to help you generate the map_matrix. The first is used
when you already have two images that you know to be related by an affine transforma-
tion or that you'd like to approximate in that way:
CvMat* cvGetAffineTransform(
const CvPoint2D32f* pts src,
const CvPoint2D32f* pts dst,
CvMat* map_matrix

)
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Here src and dst are arrays containing three two-dimensional (x, y) points, and the
map_matrix is the affine transform computed from those points.

The pts_src and pts_dst in cvGetAffineTransform() are just arrays of three points defin-
ing two parallelograms. The simplest way to define an affine transform is thus to set
pts_src to three* corners in the source image—for example, the upper and lower left
together with the upper right of the source image. The mapping from the source to
destination image is then entirely defined by specifying pts dst, the locations to which
these three points will be mapped in that destination image. Once the mapping of these
three independent corners (which, in effect, specify a “representative” parallelogram) is
established, all the other points can be warped accordingly.

Example 6-2 shows some code that uses these functions. In the example we obtain the
cviarpAffine() matrix parameters by first constructing two three-component arrays of
points (the corners of our representative parallelogram) and then convert that to the
actual transformation matrix using cvGetAffineTransform(). We then do an affine warp
followed by a rotation of the image. For our array of representative points in the source
image, called srcTri[], we take the three points: (0,0), (0,height-1), and (width-1,0). We
then specify the locations to which these points will be mapped in the corresponding
array srclri[].

Example 6-2. An affine transformation

// Usage: warp_affine <image>
I

#include <cv.h>

#include <highgui.h>

int main(int argc, char** argv)

{
CvPoint2D32f srcTri[3], dstTri[3];
CvMat* rot_mat = cvCreateMat(2,3,CV_32FC1);
CvMat* warp_mat = cvCreateMat(2,3,CV_32FC1);

Iplimage *src, *dst;

if( argc == 2 8& ((src=cvLoadImage(argv[1],1)) != 0 )) {
dst = cvCloneImage( src );
dst->origin = src->origin;

cvZero( dst );

// Compute warp matrix

//

srcTrifo].x = 0; //src Top left
srcTrifo].y = 0;

srcTri[1].x = src->width - 1; //src Top right
srcTrif1].y = 0;

srcTrif2].x = 0; //src Bottom left offset
srcTrif2].y = src->height - 1;

* We need just three points because, for an affine transformation, we are only representing a parallelogram.
We will need four points to represent a general trapezoid when we address perspective transformations.
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Example 6-2. An affine transformation (continued)

dstTri[0].x = src->width*0.0; //dst Top left
dstTri[0].y = src->height*0.33;

dstTri[1].x = src->width*0.85;  //dst Top right
dstTri[1].y = src->height*0.25;

dstTri[2].x = src->width*0.15;  //dst Bottom left offset
dstTri[2].y = src->height*0.7;

cvGetAffineTransform( srcTri, dstTri, warp mat );
cviarpAffine( src, dst, warp mat );
cvCopy( dst, src );

// Compute rotation matrix
/
CvPoint2D32f center = cvPoint2D32f(
src->width/2,
src->height/2
)
double angle = -50.0;
double scale = 0.6;
cv2DRotationMatrix( center, angle, scale, rot mat );

// Do the transformation
//
cviarpAffine( src, dst, rot mat );

cvNamedWindow( “Affine Transform”, 1 );
cvShowImage( “Affine Transform”, dst );
cvhaitKey();

}
cvReleaseImage( &dst );

cvReleaseMat( &rot mat );
cvReleaseMat( &warp mat );
return 0;
}
}

The second way to compute the map_matrix is to use cv2DRotationMatrix(), which com-
putes the map matrix for a rotation around some arbitrary point, combined with an op-
tional rescaling. This is just one possible kind of affine transformation, but it represents
an important subset that has an alternative (and more intuitive) representation that’s
easier to work with in your head:

CvMat* cv2DRotationMatrix(
CvPoint2D32f center,

double angle,
double scale,
CvMat* map_matrix

);
The first argument, center, is the center point of the rotation. The next two arguments
give the magnitude of the rotation and the overall rescaling. The final argument is the
output map_matrix, which (as always) is a 2-by-3 matrix of floating-point numbers).
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If we define or=scale-cos(angle) and f=scale-sin(angle) then this function computes
the map_matrix to be:

a B (1-a)-center —f- center,

—B o« [-center +(1—a)-center,

You can combine these methods of setting the map _matrix to obtain, for example, an
image that is rotated, scaled, and warped.

Sparse affine transformations

We have explained that cviarpAffine() is the right way to handle dense mappings.
For sparse mappings (i.e., mappings of lists of individual points), it is best to use
cvTransform():

void cvTransform(
const CvArr* src,
CvATT* dst,
const CvMat* transmat,
const CvMat* shiftvec = NULL

);
In general, src is an N-by-1 array with D, channels, where N is the number of points to
be transformed and D, is the dimension of those source points. The output array dst
must be the same size but may have a different number of channels, D,. The transforma-
tion matrix transmat is a D,-by-D,matrix that is then applied to every element of src, af-
ter which the results are placed into dst. The optional vector shiftvec, if non-NULL, must
be a D;-by-1 array, which is added to each result before the result is placed in dst.

In our case of an affine transformation, there are two ways to use cviransform() that
depend on how we’d like to represent our transformation. In the first method, we de-
compose our transformation into the 2-by-2 part (which does rotation, scaling, and
warping) and the 2-by-1 part (which does the transformation). Here our input is an
N-by-1 array with two channels, transmat is our local homogeneous transformation,
and shiftvec contains any needed displacement. The second method is to use our usual
2-by-3 representation of the affine transformation. In this case the input array src is a
three-channel array within which we must set all third-channel entries to 1 (i.e., the
points must be supplied in homogeneous coordinates). Of course, the output array will
still be a two-channel array.

Perspective Transform

To gain the greater flexibility offered by perspective transforms (homographies), we
need a new function that will allow us to express this broader class of transformations.
First we remark that, even though a perspective projection is specified completely by a
single matrix, the projection is not actually a linear transformation. This is because the
transformation requires division by the final dimension (usually Z; see Chapter 11) and
thus loses a dimension in the process.

Stretch, Shrink, Warp, and Rotate | 169



As with affine transformations, image operations (dense transformations) are handled
by different functions than transformations on point sets (sparse transformations).

Dense perspective transform

The dense perspective transform uses an OpenCV function that is analogous to the one
provided for dense affine transformations. Specifically, cvWarpPerspective() has all of
the same arguments as cviarpAffine() but with the small, but crucial, distinction that
the map matrix must now be 3-by-3.

void cvWarpPerspective(
const CvArr* src,

CvArT* dst,
const CvMat* map matrix,
int flags = CV_INTER_LINEAR + CV_WARP_FILL_OUTLIERS,

CvScalar fillval = cvScalarAll(0)
);

The flags are the same here as for the affine case.

Computing the perspective map matrix

As with the affine transformation, for filling the map_matrix in the preceding code we
have a convenience function that can compute the transformation matrix from a list of
point correspondences:
CvMat* cvGetPerspectiveTransform(
const CvPoint2D32f* pts src,

const CvPoint2D32f* pts dst,
CvMat* map_matrix

);

The pts_src and pts dst are now arrays of four (not three) points, so we can inde-
pendently control how the corners of (typically) a rectangle in pts_src are mapped to
(generally) some rhombus in pts dst. Our transformation is completely defined by
the specified destinations of the four source points. As mentioned earlier, for perspec-
tive transformations we must allocate a 3-by-3 array for map_matrix; see Example 6-3
for sample code. Other than the 3-by-3 matrix and the shift from three to four con-
trol points, the perspective transformation is otherwise exactly analogous to the affine
transformation we already introduced.

Example 6-3. Code for perspective transformation

// Usage: warp <image>
1

#include <cv.h>
#include <highgui.h>

int main(int argc, char** argv) {
CvPoint2D32f srcQuad[4], dstQuad[4];

CvMat* warp_matrix = cvCreateMat(3,3,CV_32FC1);
Iplimage *src, *dst;
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Example 6-3. Code for perspective transformation (continued)
if( argc == 2 & ((src=cvLoadImage(argv[1],1)) != 0 )) {

dst = cvCloneImage(src);
dst->origin = src->origin;

cvZero(dst);

srcQuad[0].x = 0; //src Top left
srcQuad[0].y = 0;

srcQuad[1].x = src->width - 1; //src Top right
srcQuad[1].y = 0;

srcQuad[2].x = 0; //src Bottom left
srcQuad[2].y = src->height - 1;

srcQuad[3].x = srcowidth - 1; //src Bot right
srcQuad(3].y = src->height - 1;

dstQuad[0].x = src->width*0.05; //dst Top left

X
dstQuad[0].y = src->height*0.33;
dstQuad[1].x = src->width*0.9; //dst Top right
dstQuad[1].y = src->height*0.25;
dstQuad[2].x = src->width*0.2; //dst Bottom left
dstQuad[2].y = src->height*0.7;
dstQuad[3].x = src->width*0.8; //dst Bot right
dstQuad[3].y = src->height*0.9;
cvGetPerspectiveTransform(
srcQuad,
dstQuad,
warp_matrix
);
cviarpPerspective( src, dst, warp matrix );
cvNamedWindow( “Perspective Warp”, 1 );
cvShowImage( “Perspective Warp”, dst );
cvhaitKey();
}
cvReleaseImage(8dst);
cvReleaseMat(8warp matrix);
return 0;
}
}

Sparse perspective transformations

There is a special function, cvPerspectiveTransform(), that performs perspective trans-
formations on lists of points; we cannot use cvransform(), which is limited to linear op-
erations. As such, it cannot handle perspective transforms because they require division
by the third coordinate of the homogeneous representation (x = f* X/Z, y = f* Y/Z). The
special function cvPerspectiveTransform() takes care of this for us.
void cvPerspectiveTransform(
const CvArr* src,

CvArTr* dst,
const CvMat* mat

)
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As usual, the src and dst arguments are (respectively) the array of source points to be
transformed and the array of destination points; these arrays should be of three-channel,
floating-point type. The matrix mat can be either a 3-by-3 or a 4-by-4 matrix. If it is
3-by-3 then the projection is from two dimensions to two; if the matrix is 4-by-4, then
the projection is from four dimensions to three.

In the current context we are transforming a set of points in an image to another set of
points in an image, which sounds like a mapping from two dimensions to two dimen-
sions. But this is not exactly correct, because the perspective transformation is actually
mapping points on a two-dimensional plane embedded in a three-dimensional space
back down to a (different) two-dimensional subspace. Think of this as being just what
a camera does (we will return to this topic in greater detail when discussing cameras
in later chapters). The camera takes points in three dimensions and maps them to the
two dimensions of the camera imager. This is essentially what is meant when the source
points are taken to be in “homogeneous coordinates”. We are adding an additional
dimension to those points by introducing the Z dimension and then setting all of the
Z values to 1. The projective transformation is then projecting back out of that space
onto the two-dimensional space of our output. This is a rather long-winded way of ex-
plaining why, when mapping points in one image to points in another, you will need a
3-by-3 matrix.

Output of the code in Example 6-3 is shown in Figure 6-14 for affine and perspective
transformations. Compare this with the diagrams of Figure 6-13 to see how this works
with real images. In Figure 6-14, we transformed the whole image. This isn’t necessary;
we could have used the src_pts to define a smaller (or larger!) region in the source im-
age to be transformed. We could also have used ROIs in the source or destination image
in order to limit the transformation.

CartToPolar and PolarToCart

The functions cvCartToPolar() and cvPolarToCart() are employed by more complex rou-
tines such as cvLogPolar() (described later) but are also useful in their own right. These
functions map numbers back and forth between a Cartesian (x, y) space and a polar or
radial (r, 8) space (i.e., from Cartesian to polar coordinates and vice versa). The function
formats are as follows:

void cvCartToPolar(
const CVArT* X,
const CvArr* vy,

CvATT* magnitude,
CvATT* angle = NULL,
int angle in degrees = 0

);
void cvPolarToCart(
const CvArr* magnitude,
const CvArr* angle,
CvATrT* X,
CvATT* Y,
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Original Perspective

Affine scale

Figure 6-14. Perspective and affine mapping of an image

int angle in degrees = 0

In each of these functions, the first two two-dimensional arrays or images are the input
and the second two are the outputs. If an output pointer is set to NULL then it will not
be computed. The requirements on these arrays are that they be float or doubles and
matching (size, number of channels, and type). The last parameter specifies whether we
are working with angles in degrees (0, 360) or in radians (0, 27).

For an example of where you might use this function, suppose you have already taken the
x- and y-derivatives of an image, either by using cvSobel() or by using convolution func-
tions via cvDFT() or cvFilter2D(). If you stored the x-derivatives in an image dx_img and
the y-derivatives in dy img, you could now create an edge-angle recognition histogram.
Thatis, you can collect all the angles provided the magnitude or strength of the edge pixel
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is above a certain threshold. To calculate this, we create two destination images of the
same type (integer or float) as the derivative images and call them img_mag and img_an-
gle. If you want the result to be given in degrees, then you can use the function cvCartTo
Polar( dx_img, dy img, img mag, img angle, 1 ). We would then fill the histogram
from img_angle as long as the corresponding “pixel” in img_mag is above the threshold.

LogPolar

For two-dimensional images, the log-polar transform [Schwartz80] is a change

from Cartesian to polar coordinates: (x,y)<>re”, where r={x*+y’ and
exp(i@)=exp(i - arctan(y/ x)). To separate out the polar coordinates into a (p, 6) space that

isrelative to some center point (x,, .), we take thelog so that p= log(\/ (x=x)+(y-y.)")
and @=arctan((y—y, ) / (x—x_)). For image purposes—when we need to “fit” the inter-
esting stuff into the available image memory—we typically apply a scaling factor m to p.
Figure 6-15 shows a square object on the left and its encoding in log-polar space.

A

X
% Iog r

Log-Polar

Figure 6-15. The log-polar transform maps (x, y) into (log(r),0); here, a square is displayed in the
log-polar coordinate system

The next question is, of course, “Why bother?” The log-polar transform takes its in-
spiration from the human visual system. Your eye has a small but dense center of
photoreceptors in its center (the fovea), and the density of receptors fall off rapidly (ex-
ponentially) from there. Try staring at a spot on the wall and holding your finger at
arm’s length in your line of sight. Then, keep staring at the spot and move your finger
slowly away; note how the detail rapidly decreases as the image of your finger moves
away from your fovea. This structure also has certain nice mathematical properties (be-
yond the scope of this book) that concern preserving the angles of line intersections.

More important for us is that the log-polar transform can be used to create two-
dimensional invariant representations of object views by shifting the transformed im-
age’s center of mass to a fixed point in the log-polar plane; see Figure 6-16. On the left are
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three shapes that we want to recognize as “square”. The problem is, they look very differ-
ent. One is much larger than the others and another is rotated. The log-polar transform
appears on the right in Figure 6-16. Observe that size differences in the (x, y) plane are
converted to shifts along the log(r) axis of the log-polar plane and that the rotation differ-
ences are converted to shifts along the 0-axis in the log-polar plane. If we take the trans-
formed center of each transformed square in the log-polar plane and then recenter that
point to a certain fixed position, then all the squares will show up identically in the log-
polar plane. This yields a type of invariance to two-dimensional rotation and scaling.*
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Figure 6-16. Log-polar transform of rotated and scaled squares: size goes to a shift on the log(r) axis
and rotation to a shift on the 0-axis
The OpenCV function for a log-polar transform is cvLogPolar():

void cvlogPolar(
const CvArr* src,

CvATT* dst,

CvPoint2D32f center,

double m,

int flags = CV_INTER LINEAR | CV WARP FILL OUTLIERS

);
The src and dst are one- or three-channel color or grayscale images. The parameter
center is the center point (x,, y.) of the log-polar transform; m is the scale factor, which

* In Chapter 13 we’ll learn about recognition. For now simply note that it wouldn’t be a good idea to derive a
log-polar transform for a whole object because such transforms are quite sensitive to the exact location of
their center points. What is more likely to work for object recognition is to detect a collection of key points
(such as corners or blob locations) around an object, truncate the extent of such views, and then use the
centers of those key points as log-polar centers. These local log-polar transforms could then be used to cre-
ate local features that are (partially) scale- and rotation-invariant and that can be associated with a visual
object.
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should be set so that the features of interest dominate the available image area. The flags
parameter allows for different interpolation methods. The interpolation methods are the
same set of standard interpolations available in OpenCV (Table 6-1). The interpolation
methods can be combined with either or both of the flags Cv WARP FILL OUTLIERS (to fill
points that would otherwise be undefined) or CV_WARP_INVERSE MAP (to compute the re-
verse mapping from log-polar to Cartesian coordinates).

Sample log-polar coding is given in Example 6-4, which demonstrates the forward and
backward (inverse) log-polar transform. The results on a photographic image are shown
in Figure 6-17.

Figure 6-17. Log-polar example on an elk with transform centered at the white circle on the left; the
output is on the right

Example 6-4. Log-polar transform example

// logPolar.cpp : Defines the entry point for the console application.
1

#include <cv.h>

#include <highgui.h>

int main(int argc, char** argv) {
IplImage* src;
double M;
if( argc == 3 8& ((src=cvLoadImage(argv[1],1)) != 0 )) {
M = atof(argv[2]);
IplImage* dst = cvCreateImage( cvGetSize(src), 8, 3 );
IplImage* src2 = cvCreateImage( cvGetSize(src), 8, 3 );
cvLogPolar(
src,
dst,
cvPoint2D32f(src->width/4,src->height/2),
M,
CV_INTER_LINEAR+CV_WARP FILL OUTLIERS
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Example 6-4. Log-polar transform example (continued)

);
cvLogPolar(
dst,
src2,
cvPoint2D32f(src->width/4, src->height/2),
M,
CV_INTER LINEAR | CV WARP INVERSE MAP
)s
cvNamedWindow( “log-polar”, 1 );
cvShowImage( “log-polar”, dst );
cvNamedWindow( “inverse log-polar”, 1 );
cvShowImage( “inverse log-polar”, src2 );
cviaitkey();
}

return 0;

}

Discrete Fourier Transform (DFT)

For any set of values that are indexed by a discrete (integer) parameter, is it possible to
define a discrete Fourier transform (DFT)* in a manner analogous to the Fourier trans-
form of a continuous function. For N complex numbers Xyoenns Xy > the one-dimensional
DFT is defined by the following formula (where i = J-1 ):

N 27
fi =2xn exp(—yknj, k=0,.,N-1

n=0

A similar transform can be defined for a two-dimensional array of numbers (of course
higher-dimensional analogues exist also):

NN, -1 . .

kaky = ng:) %xnxny exp(—zN—ﬂ:kxnx) exp _i\l_ﬂjky”y
In general, one might expect that the computation of the N different terms f, would
require O(N?) operations. In fact, there are a number of fast Fourier transform (FFT) al-
gorithms capable of computing these values in O(N log N) time. The OpenCV function
cvDFT() implements one such FFT algorithm. The function cvDFT() can compute FFTs
for one- and two-dimensional arrays of inputs. In the latter case, the two-dimensional
transform can be computed or, if desired, only the one-dimensional transforms of each
individual row can be computed (this operation is much faster than calling cvDFT()
many separate times).

* Joseph Fourier [Fourier] was the first to find that some functions can be decomposed into an infinite series
of other functions, and doing so became a field known as Fourier analysis. Some key text on methods of
decomposing functions into their Fourier series are Morse for physics [Morse53] and Papoulis in general
[Papoulis62]. The fast Fourier transform was invented by Cooley and Tukeye in 1965 [Cooley65] though
Carl Gauss worked out the key steps as early as 1805 [Johnson84]. Early use in computer vision is described
by Ballard and Brown [Ballard82].
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void cvDFT(
const CvArr* src,

CvArr* dst,

int flags,

int nonzero_rows = 0
);

The input and the output arrays must be floating-point types and may be single- or
double-channel arrays. In the single-channel case, the entries are assumed to be real
numbers and the output will be packed in a special space-saving format (inherited from
the same older IPL library as the IplImage structure). If the source and channel are two-
channel matrices or images, then the two channels will be interpreted as the real and
imaginary components of the input data. In this case, there will be no special packing of
the results, and some space will be wasted with a lot of 0s in both the input and output
arrays.*

The special packing of result values that is used with single-channel output is as
follows.

For a one-dimensional array:

ReY, | ReY, | ImY, | ReY, | ImY, | = | ReYyy | ImYyry | ReYuny
For a two-dimensional array:

Re Yy Re Yy Im Yy, Re Y, Im Y, o Re Yopu- Im Yooy Re Yopuus)

Re Yy Re Yy Im Y, ReYy, ImY; o Re Y1 Im Yy Re Vi)

Re Yy ReY, ImYy, ReY,, ImYy, o Re Yy Im Y00 Re Yo
Re Y(Ny/H)ﬂ Re Y(Ny%)l Im Y(Ny%)l Re Y(Nyfi)l Im Y(Ny73)2 | Re Y(Nyfz)(lelfl) Im Y(Ny—})(Nx/H) Re Y(Ny%)(Nx/Z)
1M Yoo Re Yoo | 1M Yoo | Re Yooy | 1M Yoyon | | ReNoyoagmy | 1M Yoy-aomn-n | R Voyamwn
Re Yoo | Re Youy—nn | 1M Yoo | ReVYoyomy | 1M Yoo | = | ReVoyonmeny | 1M Yingonmenny | R€ Yoyonmen)

It is worth taking a moment to look closely at the indices on these arrays. The issue here
is that certain values are guaranteed to be 0 (more accurately, certain values of f; are
guaranteed to be real). It should also be noted that the last row listed in the table will be
present only if N, is even and that the last column will be present only if N, is even. (In the
case of the 2D array being treated as N, 1D arrays rather than a full 2D transform, all of
the result rows will be analogous to the single row listed for the output of the 1D array).

* When using this method, you must be sure to explicitly set the imaginary components to 0 in the two-
channel representation. An easy way to do this is to create a matrix full of Os using cvZero() for the
imaginary part and then to call cvMerge() with a real-valued matrix to form a temporary complex array on
which to run cvDFT() (possibly in-place). This procedure will result in full-size, unpacked, complex matrix
of the spectrum.
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The third argument, called flags, indicates exactly what operation is to be done. The
transformation we started with is known as a forward transform and is selected with the
flag CV_DXT_FORWARD. The inverse transform* is defined in exactly the same way except
for a change of sign in the exponential and a scale factor. To perform the inverse trans-
form without the scale factor, use the flag Cv_DXT INVERSE. The flag for the scale factor is
CV_DXT_SCALE, and this results in all of the output being scaled by a factor of 1/N (or 1/N, N,
for a 2D transform). This scaling is necessary if the sequential application of the forward
transform and the inverse transform is to bring us back to where we started. Because one
often wants to combine CV_DXT INVERSE with CV _DXT SCALE, there are several shorthand
notations for this kind of operation. In addition to just combining the two operations
with OR, you can use CV_DXT_INV_SCALE (or CV_DXT INVERSE_SCALE if you're not into that
brevity thing). The last flag you may want to have handy is CV_DXT_ROWS, which allows
you to tell cvDFT() to treat a two-dimensional array as a collection of one-dimensional
arrays that should each be transformed separately as if they were N, distinct vectors of
length N,. This significantly reduces overhead when doing many transformations at a
time (especially when using Intel’s optimized IPP libraries). By using CV_DXT ROWS it is
also possible to implement three-dimensional (and higher) DFT.

In order to understand the last argument, nonzero rows, we must digress for a moment.
In general, DFT algorithms will strongly prefer vectors of some lengths over others or
arrays of some sizes over others. In most DFT algorithms, the preferred sizes are pow-
ers of 2 (i.e., 2" for some integer 7). In the case of the algorithm used by OpenCV, the
preference is that the vector lengths, or array dimensions, be 27345, for some integers
P> g, and r. Hence the usual procedure is to create a somewhat larger array (for which
purpose there is a handy utility function, cvGetOptimalDFTSize(), which takes the length
of your vector and returns the first equal or larger appropriate number size) and then
use cvGetSubRect() to copy your array into the somewhat roomier zero-padded array.
Despite the need for this padding, it is possible to indicate to cvDFT() that you really do
not care about the transform of those rows that you had to add down below your actual
data (or, if you are doing an inverse transform, which rows in the result you do not care
about). In either case, you can use nonzero_rows to indicate how many rows can be safely
ignored. This will provide some savings in computation time.

Spectrum Multiplication

In many applications that involve computing DFTs, one must also compute the per-
element multiplication of two spectra. Because such results are typically packed in their
special high-density format and are usually complex numbers, it would be tedious to
unpack them and handle the multiplication via the “usual” matrix operations. Fortu-
nately, OpenCV provides the handy cvMulSpectrums() routine, which performs exactly
this function as well as a few other handy things.

* With the inverse transform, the input is packed in the special format described previously. This makes sense
because, if we first called the forward DFT and then ran the inverse DFT on the results, we would expect to
wind up with the original data—that is, of course, if we remember to use the CV_DXT_SCALE flag!
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void cvMulSpectrums(
const CvArr* srci,
const CvArr* src2,
CvATT* dst,
int flags
);
Note that the first two arguments are the usual input arrays, though in this case they are
spectra from calls to cvDFT(). The third argument must be a pointer to an array—of the
same type and size as the first two—that will be used for the results. The final argument,
flags, tells cvMulSpectrums() exactly what you want done. In particular, it may be set to 0
(CV_DXT_FORWARD) for implementing the above pair multiplication or set to CV_DXT_MUL_CONJ
if the element from the first array is to be multiplied by the complex conjugate of the
corresponding element of the second array. The flags may also be combined with CV_
DXT_ROWS in the two-dimensional case if each array row 0 is to be treated as a separate
spectrum (remember, if you created the spectrum arrays with Cv_DXT ROWS then the data
packing is slightly different than if you created them without that function, so you must
be consistent in the way you call cvMulSpectrums).

Convolution and DFT

It is possible to greatly increase the speed of a convolution by using DFT via the convo-
lution theorem [Titchmarsh26] that relates convolution in the spatial domain to multi-
plication in the Fourier domain [Morse53; Bracewell65; Arfken85].* To accomplish this,
one first computes the Fourier transform of the image and then the Fourier transform
of the convolution filter. Once this is done, the convolution can be performed in the
transform space in linear time with respect to the number of pixels in the image. It is
worthwhile to look at the source code for computing such a convolution, as it also will
provide us with many good examples of using cvDFT(). The code is shown in Example
6-5, which is taken directly from the OpenCV reference.

Example 6-5. Use of cvDFT() to accelerate the computation of convolutions

// Use DFT to accelerate the convolution of array A by kernel B.
// Place the result in array V.
//
void speedy conv olution(
const CvMat* A, // Size: MixN1i
const CvMat* B, // Size: M2xN2
CvMat* C // Size:(A->rows+B->rows-1)x(A->cols+B->cols-1)

) 1

int dft M = cvGetOptimalDFTSize( A->rows+B->rows-1 );
int dft N = cvGetOptimalDFTSize( A->cols+B->cols-1 );

CvMat* dft_A = cvCreateMat( dft_M, dft N, A->type );
CvMat* dft B = cvCreateMat( dft M, dft N, B->type );
CvMat tmp;

* Recall that OpenCV’s DFT algorithm implements the FFT whenever the data size makes the FFT faster.
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Example 6-5. Use of cvDFT() to accelerate the computation of convolutions (continued)

// copy A to dft_A and pad dft A with zeros
//
cvGetSubRect( dft A, &tmp, cvRect(0,0,A->cols,A->rows));
cvCopy( A, &tmp );
cvGetSubRect(
dft_A,
&tmp,
cvRect( A->cols, 0, dft A->cols-A->cols, A->rows )
);
cvZero( &tmp );

// no need to pad bottom part of dft A with zeros because of
// use nonzero rows parameter in cvDFT() call below

//
CVDFT( dft_A, dft A, CV_DXT FORWARD, A->rows );

// repeat the same with the second array
I
cvGetSubRect( dft B, &tmp, cvRect(0,0,B->cols,B->rows) );
cvCopy( B, &tmp );
cvGetSubRect(
dft B,
&tmp,
cvRect( B->cols, 0, dft B->cols-B->cols, B->rows )
);
cvZero( &tmp );

// no need to pad bottom part of dft B with zeros because of
// use nonzero rows parameter in cvDFT() call below

//
cVDFT( dft B, dft B, CV DXT FORWARD, B->rows );

// or CV_DXT MUL_CONJ to get correlation rather than convolution

//
cvMulSpectrums( dft A, dft B, dft A, 0 );

// calculate only the top part

//
CVDFT( dft_A, dft A, CV DXT INV_SCALE, C->rows );
cvGetSubRect( dft_A, &tmp, cvRect(0,0,conv->cols,C->rows) );

cvCopy( &tmp, C );

cvReleaseMat( dft A );
cvReleaseMat( dft B );
}

In Example 6-5 we can see that the input arrays are first created and then initialized.
Next, two new arrays are created whose dimensions are optimal for the DFT algorithm.
The original arrays are copied into these new arrays and then the transforms are com-
puted. Finally, the spectra are multiplied together and the inverse transform is applied
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to the product. The transforms are the slowest* part of this operation; an N-by-N im-
age takes O(N?* log N) time and so the entire process is also completed in that time
(assuming that N > M for an M-by-M convolution kernel). This time is much faster than
O(N2M?), the non-DFT convolution time required by the more naive method.

Discrete Cosine Transform (DCT)

For real-valued data it is often sufficient to compute what is, in effect, only half of the
discrete Fourier transform. The discrete cosine transform (DCT) [Ahmed74; Jain77] is
defined analogously to the full DFT by the following formula:

X, -COS(—HM)

Observe that, by convention, the normalization factor is applied to both the cosine trans-
form and its inverse. Of course, there is a similar transform for higher dimensions.

The basic ideas of the DFT apply also to the DCT, but now all the coefficients are real-
valued. Astute readers might object that the cosine transform is being applied to a vec-
tor that is not a manifestly even function. However, with cvDCT() the algorithm simply
treats the vector as if it were extended to negative indices in a mirrored manner.

The actual OpenCV call is:

void cvDCT(
const CvArr* src,
CvATrT* dst,
int flags
);
The cvDCT() function expects arguments like those for cvDFT() except that, because the
results are real-valued, there is no need for any special packing of the result array (or of
the input array in the case of an inverse transform). The flags argument can be set to
CV_DXT_FORWARD or CV_DXT INVERSE, and either may be combined with CV_DXT ROWS with
the same effect as with cvDFT(). Because of the different normalization convention, both
the forward and inverse cosine transforms always contain their respective contribution
to the overall normalization of the transform; hence CV_DXT SCALE plays no role in cvDCT.

Integral Images

OpenCV allows you to calculate an integral image easily with the appropriately named
cvIntegral() function. An integral image [Viola04] is a data structure that allows rapid

* By “slowest” we mean “asymptotically slowest”—in other words, that this portion of the algorithm takes the
most time for very large N. This is an important distinction. In practice, as we saw in the earlier section on
convolutions, it is not always optimal to pay the overhead for conversion to Fourier space. In general, when
convolving with a small kernel it will not be worth the trouble to make this transformation.
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summing of subregions. Such summations are useful in many applications; a notable
one is the computation of Haar wavelets, which are used in some face recognition and
similar algorithms.

void cvIntegral(
const CvArr* image,

CvATT* sum,
CvArr* sqsum = NULL,
CvArr* tilted sum = NULL

);

The arguments to cvIntegral() are the original image as well as pointers to destination
images for the results. The argument sum is required; the others, sqsum and tilted sum,
may be provided if desired. (Actually, the arguments need not be images; they could
be matrices, but in practice, they are usually images.) When the input image is 8-bit
unsigned, the sum or tilted sum may be 32-bit integer or floating-point arrays. For all
other cases, the sum or tilted sum must be floating-point valued (either 32- or 64-bit).
The result “images” must always be floating-point. If the input image is of size W-by-H,
then the output images must be of size (W + 1)-by-(H + 1).*

An integral image sum has the form:

sum(X,Y) =z Zimage(x,y)

KX y<y

The optional sgsum image is the sum of squares:

sum(X,Y)= > Y (image(x, y))?

X<Xy<Y
and the tilted sumis like the sum except that it is for the image rotated by 45 degrees:

tilt_sum(X,Y)zz 2 image(x, y)

y<Y abs(x—X)<y

Using these integral images, one may calculate sums, means, and standard deviations
over arbitrary upright or “tilted” rectangular regions of the image. As a simple exam-
ple, to sum over a simple rectangular region described by the corner points (x1, y1) and
(%2, ¥2), where x2 > x1 and y2 > y1, we’d compute:

2 2 [image(x, )]

x1Sx<x2 ylSy<y2

=[sum(x2, y2)—sum(x1-1, y2)—sum(x2, yl—1)+sum(x1—1, y1—1)]

In this way, it is possible to do fast blurring, approximate gradients, compute means and
standard deviations, and perform fast block correlations even for variable window sizes.

* This is because we need to put in a buffer of zero values along the x-axis and y-axis in order to make
computation efficient.
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To make this all a little more clear, consider the 7-by-5 image shown in Figure 6-18; the
region is shown as a bar chart in which the height associated with the pixels represents
the brightness of those pixel values. The same information is shown in Figure 6-19, nu-
merically on the left and in integral form on the right. Integral images (I') are computed
by going across rows, proceeding row by row using the previously computed integral
image values together with the current raw image (I) pixel value I(x, y) to calculate the
next integral image value as follows:

I'(x,y)=I(x,y)+I'"(x=1,y)+I'(x,y-1)-I'"(x -1,y 1)

Figure 6-18. Simple 7-by-5 image shown as a bar chart with x, y, and height equal to pixel value

The last term is subtracted off because this value is double-counted when adding the sec-
ond and third terms. You can verify that this works by testing some values in Figure 6-19.

When using the integral image to compute a region, we can see by Figure 6-19 that, in
order to compute the central rectangular area bounded by the 20s in the original image,
we’d calculate 398 — 9 - 10 + 1 = 380. Thus, a rectangle of any size can be computed us-
ing four measurements (resulting in O(1) computational complexity).
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1 2 5 1 2 1 3 8 9 11

2 20 50 20 5 3 25 80 101 108
5 50 100 50 2 8 80 235 306 315
2 20 50 20 1 10 102 307 398 408
1 5 25 1 2 11 108 338 430 442
5 2 25 2 5 16 115 370 464 481
2 1 5 2 1 18 118 378 474 492

Figure 6-19. The 7-by-5 image of Figure 6-18 shown numerically at left (with the origin assumed to
be the upper-left) and converted to an integral image at right

Distance Transform

The distance transform of an image is defined as a new image in which every output
pixel is set to a value equal to the distance to the nearest zero pixel in the input image.
It should be immediately obvious that the typical input to a distance transform should
be some kind of edge image. In most applications the input to the distance transform is
an output of an edge detector such as the Canny edge detector that has been inverted (so
that the edges have value zero and the non-edges are nonzero).

In practice, the distance transform is carried out by using a mask that is typically a 3-by-3
or 5-by-5 array. Each point in the array defines the “distance” to be associated with a
point in that particular position relative to the center of the mask. Larger distances are
built up (and thus approximated) as sequences of “moves” defined by the entries in the
mask. This means that using a larger mask will yield more accurate distances.

Depending on the desired distance metric, the appropriate mask is automatically se-
lected from a set known to OpenCV. It is also possible to tell OpenCV to compute “ex-
act” distances according to some formula appropriate to the selected metric, but of
course this is much slower.

The distance metric can be any of several different types, including the classic L2 (Car-
tesian) distance metric; see Table 6-2 for a listing. In addition to these you may define a
custom metric and associate it with your own custom mask.

Table 6-2. Possible values for distance_type argument to cvDistTransform()

Value of distance_type Metric
rZ
CV_DIST_L2 plr )=7
CV_DIST_L1 plr)=r
rl
CV_DIST_L12 plr)=2 1+7 -1
CV_DIST_FAIR plr=C Z[E—Iog[ﬂg]], (=13998
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Table 6-2. Possible values for distance_type argument to cvDistTransform() (continued)

Value of distance_type Metric
) 2
C r
CV_DIST_WELSCH plr==-|1-em {c] - (=29846
CV_DIST_USER User-defined distance

When calling the OpenCV distance transform function, the output image should be a
32-bit floating-point image (i.e., IPL_DEPTH_32F).
Void cvDistTransform(
const CvArr* src,

CvArT* dst,

int distance type = CV DIST L2,
int mask_size =3,

const float* kernel = NULL,
CvArT* labels = NULL

);
There are several optional parameters when calling cvDistTransform(). The first is
distance type, which indicates the distance metric to be used. The available values for
this argument are defined in Borgefors (1986) [Borgefors86].

After the distance type is the mask size, which may be 3 (choose CV DIST MASK 3) or 5
(choose CV_DIST MASK 5); alternatively, distance computations can be made without a
kernel* (choose CV_DIST MASK PRECISE). The kernel argument to cvDistanceTransform() is
the distance mask to be used in the case of custom metric. These kernels are constructed
according to the method of Gunilla Borgefors, two examples of which are shown in Fig-
ure 6-20. The last argument, labels, indicates that associations should be made between
individual points and the nearest connected component consisting of zero pixels. When
labels is non-NULL, it must be a pointer to an array of integer values the same size as the
input and output images. When the function returns, this image can be read to deter-
mine which object was closest to the particular pixel under consideration. Figure 6-21
shows the outputs of distance transforms on a test pattern and a photographic image.

Histogram Equalization

Cameras and image sensors must usually deal not only with the contrast in a scene but
also with the image sensors’ exposure to the resulting light in that scene. In a standard
camera, the shutter and lens aperture settings juggle between exposing the sensors to
too much or too little light. Often the range of contrasts is too much for the sensors to
deal with; hence there is a trade-off between capturing the dark areas (e.g., shadows),
which requires a longer exposure time, and the bright areas, which require shorter ex-
posure to avoid saturating “whiteouts.”

* The exact method comes from Pedro F. Felzenszwalb and Daniel P. Huttenlocher [Felzenszwalb63].
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User defined 3x3 mask User defined 5x5 mask

(a=1, b=1.5) (a=1, b=1.5, c=2)
454 [35[3[35[4 [a5 45(35(3 [3/3 [35]as
4 [3 [25[2]25[3 [4 35(3 [2 22 [3 [35
35[25[15[1[15[25 35 3 [2 [1s]11s]2 |3
3 2 1 F 1 2 3 3 2 1 |"0— 1 2 3
35[25[15[1[15[25[35 3 [2 [is[ifus]2 |3
4 [3 [25]2]25[3 [4 35[3 [2 [2]2 [3 [35
a5)a [35(3[35[a |45 s (353 [3[3 [35]a

Figure 6-20. Two custom distance transform masks

Figure 6-21. First a Canny edge detector was run with paraml=100 and param2=200; then the
distance transform was run with the output scaled by a factor of 5 to increase visibility
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After the picture has been taken, there’s nothing we can do about what the sensor re-
corded; however, we can still take what’s there and try to expand the dynamic range
of the image. The most commonly used technique for this is histogram equalization.*
In Figure 6-22 we can see that the image on the left is poor because there’s not much
variation of the range of values. This is evident from the histogram of its intensity values
on the right. Because we are dealing with an 8-bit image, its intensity values can range
from 0 to 255, but the histogram shows that the actual intensity values are all clustered
near the middle of the available range. Histogram equalization is a method for stretch-
ing this range out.

Figure 6-22. The image on the left has poor contrast, as is confirmed by the histogram of its
intensity values on the right

The underlying math behind histogram equalization involves mapping one distribution
(the given histogram of intensity values) to another distribution (a wider and, ideally,
uniform distribution of intensity values). That is, we want to spread out the y-values
of the original distribution as evenly as possible in the new distribution. It turns out
that there is a good answer to the problem of spreading out distribution values: the re-
mapping function should be the cumulative distribution function. An example of the
cumulative density function is shown in Figure 6-23 for the somewhat idealized case of
a distribution that was originally pure Gaussian. However, cumulative density can be
applied to any distribution; it is just the running sum of the original distribution from
its negative to its positive bounds.

We may use the cumulative distribution function to remap the original distribution as
an equally spread distribution (see Figure 6-24) simply by looking up each y-value in
the original distribution and seeing where it should go in the equalized distribution.

* If you are wondering why histogram equalization is not in the chapter on histograms (Chapter 7), the rea-
son is that histogram equalization makes no explicit use of any histogram data types. Although histograms
are used internally, the function (from the user’s perspective) requires no histograms at all.

+ Histogram equalization is an old mathematical technique; its use in image processing is described in vari-
ous textbooks [Jain86; Russ02; Acharya05], conference papers [Schwarz78], and even in biological vision
[Laughlin81].
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Figure 6-23. Result of cumulative distribution function (left) on a Gaussian distribution (right)
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Figure 6-24. Using the cumulative density function to equalize a Gaussian distribution

For continuous distributions the result will be an exact equalization, but for digitized/
discrete distributions the results may be far from uniform.

Applying this equalization process to Figure 6-22 yields the equalized intensity distri-
bution histogram and resulting image in Figure 6-25. This whole process is wrapped up
in one neat function:

Histogram Equalization | 189



void cvEqualizeHist(
const CvArr* src,
CvArT* dst

)

Figure 6-25. Histogram equalized results: the spectrum has been spread out

In cvEqualizeHist(), the source and destination must be single-channel, 8-bit images of
the same size. For color images you will have to separate the channels and process them
one by one.

Exercises

1. Use cvFilter2D() to create a filter that detects only 60 degree lines in an image. Dis-
play the results on a sufficiently interesting image scene.

2. Separable kernels. Create a 3-by-3 Gaussian kernel using rows [(1/16, 2/16, 1/16),
(2/16, 4/16, 2/16), (1/16, 2/16, 1/16)] and with anchor point in the middle.

a. Run this kernel on an image and display the results.

b. Now create two one-dimensional kernels with anchors in the center: one going
“across” (1/4, 2/4, 1/4), and one going down (1/4, 2/4, 1/4). Load the same origi-
nal image and use cvFilter2D() to convolve the image twice, once with the first
1D kernel and once with the second 1D kernel. Describe the results.

c. Describe the order of complexity (number of operations) for the kernel in part
a and for the kernels in part b. The difference is the advantage of being able to
use separable kernels and the entire Gaussian class of filters—or any linearly
decomposable filter that is separable, since convolution is a linear operation.

3. Can you make a separable kernel from the filter shown in Figure 6-5? If so, show
what it looks like.

4. In a drawing program such as PowerPoint, draw a series of concentric circles form-
ing a bull’s-eye.
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5.

10.

a. Make a series of lines going into the bull’s-eye. Save the image.

b. Usinga 3-by-3 aperture size, take and display the first-order x- and y-derivatives
of your picture. Then increase the aperture size to 5-by-5, 9-by-9, and 13-by-13.
Describe the results.

Create a new image that is just a 45 degree line, white on black. For a given series of
aperture sizes, we will take the image’s first-order x-derivative (dx) and first-order
y-derivative (dy). We will then take measurements of this line as follows. The (dx)
and (dy) images constitute the gradient of the input image. The magnitude atlocation

@i, ) is mag(i,j)=\/dxz(i,j)+dy2(i,j) and the angle is (i, j)=arctan(dy(i, j)dx(i, j)).
Scan across the image and find places where the magnitude is at or near maximum.
Record the angle at these places. Average the angles and report that as the measured
line angle.

a. Do this for a 3-by-3 aperture Sobel filter.
b. Do this for a 5-by-5 filter.

c. Do this for a 9-by-9 filter.

d. Do the results change? If so, why?

. Find and load a picture of a face where the face is frontal, has eyes open, and takes

up most or all of the image area. Write code to find the pupils of the eyes.

A Laplacian “likes” a bright central point surrounded by dark. Pupils
are just the opposite. Invert and convolve with a sufficiently large
Laplacian.

. In this exercise we learn to experiment with parameters by setting good lowThresh

and highThresh values in cvCanny(). Load an image with suitably interesting
line structures. We’ll use three different high:low threshold settings of 1.5:1, 2.75:1,
and 4:1.

a. Report what you see with a high setting of less than 50.

b. Report what you see with high settings between 50 and 100.
c. Report what you see with high settings between 100 and 150.
d. Report what you see with high settings between 150 and 200.
e. Report what you see with high settings between 200 and 250.

f. Summarize your results and explain what happens as best you can.

. Load an image containing clear lines and circles such as a side view of a bicycle. Use

the Hough line and Hough circle calls and see how they respond to your image.

. Can you think of a way to use the Hough transform to identify any kind of shape

with a distinct perimeter? Explain how.

Look at the diagrams of how the log-polar function transforms a square into a wavy
line.
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11.

12.

13.

14.

15.

16.
17.

a. Draw the log-polar results if the log-polar center point were sitting on one of
the corners of the square.

b. What would a circle look like in a log-polar transform if the center point were
inside the circle and close to the edge?

c. Draw what the transform would look like if the center point were sitting just
outside of the circle.

A log-polar transform takes shapes of different rotations and sizes into a space
where these correspond to shifts in the 6-axis and log(r) axis. The Fourier trans-
form is translation invariant. How can we use these facts to force shapes of different
sizes and rotations to automatically give equivalent representations in the log-polar
domain?

Draw separate pictures of large, small, large rotated, and small rotated squares.
Take the log-polar transform of these each separately. Code up a two-dimensional
shifter that takes the center point in the resulting log-polar domain and shifts the
shapes to be as identical as possible.

Take the Fourier transform of a small Gaussian distribution and the Fourier trans-
form of an image. Multiply them and take the inverse Fourier transform of the re-
sults. What have you achieved? As the filters get bigger, you will find that working
in the Fourier space is much faster than in the normal space.

Load an interesting image, convert it to grayscale, and then take an integral image
of it. Now find vertical and horizontal edges in the image by using the properties of
an integral image.

Use long skinny rectangles; subtract and add them in place.

Explain how you could use the distance transform to automatically align a known
shape with a test shape when the scale is known and held fixed. How would this be
done over multiple scales?

Practice histogram equalization on images that you load in, and report the results.

Load an image, take a perspective transform, and then rotate it. Can this transform
be done in one step?
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CHAPTER 7
Histograms and Matching

In the course of analyzing images, objects, and video information, we frequently want
to represent what we are looking at as a histogram. Histograms can be used to represent
such diverse things as the color distribution of an object, an edge gradient template of
an object [Freeman95], and the distribution of probabilities representing our current
hypothesis about an object’s location. Figure 7-1 shows the use of histograms for rapid
gesture recognition. Edge gradients were collected from “up”, “right”, “left”, “stop” and
“OK” hand gestures. A webcam was then set up to watch a person who used these ges-
tures to control web videos. In each frame, color interest regions were detected from
the incoming video; then edge gradient directions were computed around these interest
regions, and these directions were collected into orientation bins within a histogram.
The histograms were then matched against the gesture models to recognize the gesture.
The vertical bars in Figure 7-1 show the match levels of the different gestures. The gray
horizontal line represents the threshold for acceptance of the “winning” vertical bar
corresponding to a gesture model.

Histograms find uses in many computer vision applications. Histograms are used to
detect scene transitions in videos by marking when the edge and color statistics mark-
edly change from frame to frame. They are used to identify interest points in images by
assigning each interest point a “tag” consisting of histograms of nearby features. His-
tograms of edges, colors, corners, and so on form a general feature type that is passed
to classifiers for object recognition. Sequences of color or edge histograms are used to
identify whether videos have been copied on the web, and the list goes on. Histograms
are one of the classic tools of computer vision.

Histograms are simply collected counts of the underlying data organized into a set of
predefined bins. They can be populated by counts of features computed from the data,
such as gradient magnitudes and directions, color, or just about any other characteristic.
In any case, they are used to obtain a statistical picture of the underlying distribution
of data. The histogram usually has fewer dimensions than the source data. Figure 7-2
depicts a typical situation. The figure shows a two-dimensional distribution of points
(upper left); we impose a grid (upper right) and count the data points in each grid cell,
yielding a one-dimensional histogram (lower right). Because the raw data points can
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Figure 7-1. Local histograms of gradient orientations are used to find the hand and its gesture; here
the “winning” gesture (longest vertical bar) is a correct recognition of “L” (move left)

represent just about anything, the histogram is a handy way of representing whatever it
is that you have learned from your image.

Histograms that represent continuous distributions do so by implicitly averaging the
number of points in each grid cell.* This is where problems can arise, as shown in Fig-
ure 7-3. If the grid is too wide (upper left), then there is too much averaging and we lose
the structure of the distribution. If the grid is too narrow (upper right), then there is not
enough averaging to represent the distribution accurately and we get small, “spiky” cells.

OpenCV has a data type for representing histograms. The histogram data structure is
capable of representing histograms in one or many dimensions, and it contains all the
data necessary to track bins of both uniform and nonuniform sizes. And, as you might
expect, it comes equipped with a variety of useful functions which will allow us to easily
perform common operations on our histograms.

* This is also true of histograms representing information that falls naturally into discrete groups when the
histogram uses fewer bins than the natural description would suggest or require. An example of this is rep-
resenting 8-bit intensity values in a 10-bin histogram: each bin would then combine the points associated
with approximately 25 different intensities, (erroneously) treating them all as equivalent.
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Figure 7-2. Typical histogram example: starting with a cloud of points (upper left), a counting grid is
imposed (upper right) that yields a one-dimensional histogram of point counts (lower right)

Basic Histogram Data Structure

Let’s start out by looking directly at the CvHistogram data structure.
typedef struct CvHistogram

{
int type;
CvArT* bins;
float  thresh[CV_MAX DIM][2]; // for uniform histograms
float** thresh2; // for nonuniform histograms
CvMatND mat; // embedded matrix header

// for array histograms
}
CvHistogram;

This definition is deceptively simple, because much of the internal data of the histogram
is stored inside of the CvMatND structure. We create new histograms with the following
routine:

CvHistogram* cvCreateHist(

int dims,

int* sizes,

int type,

float** ranges = NULL,
int uniform = 1
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Figure 7-3. A histogram’s accuracy depends on its grid size: a grid that is too wide yields too much
spatial averaging in the histogram counts (left); a grid that is too small yields “spiky” and singleton
results from too little averaging (right)

The argument dims indicates how many dimensions we want the histogram to have. The
sizes argument must be an array of integers whose length is equal to dims. Each integer
in this array indicates how many bins are to be assigned to the corresponding dimension.
The type can be either CV_HIST ARRAY, which is used for multidimensional histograms to
be stored using the dense multidimensional matrix structure (i.e., CvMatND), or CV_HIST
SPARSE* if the data is to be stored using the sparse matrix representation (CvSparseMat). The
argument ranges can have one of two forms. For a uniform histogram, ranges is an array
of floating-point value pairs,” where the number of value pairs is equal to the number of
dimensions. For a nonuniform histogram, the pairs used by the uniform histogram are
replaced by arrays containing the values by which the nonuniform bins are separated.
If there are N bins, then there will be N + 1 entries in each of these subarrays. Each ar-
ray of values starts with the bottom edge of the lowest bin and ends with the top edge
of the highest bin.* The Boolean argument uniform indicates if the histogram is to have

* For you old timers, the value CV_HIST TREE is still supported, but it is identical to CV_HIST SPARSE.

t These “pairs” are just C-arrays with only two entries.

i To clarify: in the case of a uniform histogram, if the lower and upper ranges are set to 0 and 10, respectively,
and if there are two bins, then the bins will be assigned to the respective intervals [0, 5) and [5, 10]. In the case
of a nonuniform histogram, if the size dimension i is 4 and if the corresponding ranges are set to (0, 2, 4, 9, 10),
then the resulting bins will be assigned to the following (nonuniform) intervals: [0, 2), [2,4), [4,9), and [9, 10].
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uniform bins and thus how the ranges value is interpreted;* if set to a nonzero value, the
bins are uniform. It is possible to set ranges to NULL, in which case the ranges are simply
“unknown” (they can be set later using the specialized function cvSetHistBinRanges()).
Clearly, you had better set the value of ranges before you start using the histogram.

void cvSetHistBinRanges(
CvHistogram* hist,
float** ranges,
int uniform = 1
);
The arguments to cvSetHistRanges() are exactly the same as the corresponding argu-
ments for cvCreateHist(). Once you are done with a histogram, you can clear it (i.e.,
reset all of the bins to 0) if you plan to reuse it or you can de-allocate it with the usual
release-type function.

void cvClearHist(
CvHistogram* hist
).

)
void cvReleaseHist(
CvHistogram** hist

);
As usual, the release function is called with a pointer to the histogram pointer you
obtained from the create function. The histogram pointer is set to NULL once the histo-
gram is de-allocated.

Another useful function helps create a histogram from data we already have lying
around:

CvHistogram* cvMakeHistHeaderForArray(

int dims,

int* sizes,
CvHistogram* hist,

float* data,

float** ranges = NULL,
int uniform = 1

);

In this case, hist is a pointer to a CvHistogram data structure and data is a pointer to
an area of size sizes[0]*sizes[1]*...*sizes[dims-1] for storing the histogram bins. Notice
that data is a pointer to float because the internal data representation for the histogram
is always of type float. The return value is just the same as the hist value we passed in.
Unlike the cvCreateHist() routine, there is no type argument. All histograms created by
cvMakeHistHeaderForArray() are dense histograms. One last point before we move on:
since you (presumably) allocated the data storage area for the histogram bins yourself,
there is no reason to call cvReleaseHist() on your CvHistogram structure. You will have
to clean up the header structure (if you did not allocate it on the stack) and, of course,
clean up your data as well; but since these are “your” variables, you are assumed to be
taking care of this in your own way.

* Have no fear that this argument is type int, because the only meaningful distinction is between zero and
nonzero.
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Accessing Histograms

There are several ways to access a histogram’s data. The most straightforward method is
to use OpenCV’s accessor functions.

double cvQueryHistValue 1D(
CvHistogram* hist,
int idxo
);
double cvQueryHistValue 2D(
CvHistogram* hist,
int idxo,
int idx1
);
double cvQueryHistValue 3D(
CvHistogram* hist,

int idxo,
int idx1,
int idx2

);
double cvQueryHistValue nD(
CvHistogram* hist,
int* idxN
);
Each of these functions returns a floating-point number for the value in the appropriate
bin. Similarly, you can set (or get) histogram bin values with the functions that return a
pointer to a bin (nof to a bin’s value):
float* cvGetHistValue 1D(
CvHistogram* hist,
int idxo
);
float* cvGetHistValue 2D(
CvHistogram* hist,
int idxo,
int idx1
);
float* cvGetHistValue 3D(
CvHistogram* hist,

int idxo,
int idx1,
int idx2

iioat* cvGetHistValue nD(

CvHistogram* hist,

int* idxN

);

These functions look a lot like the cvGetReal*D and cvPtr*D families of functions, and
in fact they are pretty much the same thing. Inside of these calls are essentially those
same matrix accessors called with the matrix hist->bins passed on to them. Similarly,
the functions for sparse histograms inherit the behavior of the corresponding sparse
matrix functions. If you attempt to access a nonexistent bin using a GetHist*() function
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in a sparse histogram, then that bin is automatically created and its value set to 0. Note
that QueryHist*() functions do not create missing bins.

This leads us to the more general topic of accessing the histogram. In many cases, for
dense histograms we will want to access the bins member of the histogram directly. Of
course, we might do this just as part of data access. For example, we might want to access
all of the elements in a dense histogram sequentially, or we might want to access bins di-
rectly for performance reasons, in which case we might use hist->mat.data.f1 (again, for
dense histograms). Other reasons for accessing histograms include finding how many
dimensions it has or what regions are represented by its individual bins. For this infor-
mation we can use the following tricks to access either the actual data in the CvHistogram
structure or the information imbedded in the CvMatND structure known as mat.

int n_dimension = histogram->mat.dims;
int dim i nbins histogram->mat.dim[ i ].size;

// uniform histograms
int dim i bin lower bound = histogram->thresh[ i ][ 0 ];
int dim i bin upper bound = histogram->thresh[ i ][ 1

// nonuniform histograms
int dim_i bin_j_lower_bound = histogram->thresh2[ i ][ j I;
int dim_j bin j upper bound = histogram->thresh2[ i ][ j+1 ];

As you can see, there’s a lot going on inside the histogram data structure.

Basic Manipulations with Histograms

Now that we have this great data structure, we will naturally want to do some fun stuff
with it. First let’s hit some of the basics that will be used over and over; then we’ll move
on to some more complicated features that are used for more specialized tasks.

When dealing with a histogram, we typically just want to accumulate information into
its various bins. Once we have done this, however, it is often desirable to work with the
histogram in normalized form, so that individual bins will then represent the fraction of
the total number of events assigned to the entire histogram:
cvNormalizeHist( CvHistogram* hist, double factor );

Here hist is your histogram and factor is the number to which you would like to nor-
malize the histogram (which will usually be 1). If you are following closely then you
may have noticed that the argument factor is a double although the internal data type
of CvHistogram() is always float—further evidence that OpenCV is a work in progress!

The next handy function is the threshold function:

cvThreshHist( CvHistogram* hist, double factor );
The argument factor is the cutoff for the threshold. The result of thresholding a his-
togram is that all bins whose value is below the threshold factor are set to 0. Recall-
ing the image thresholding function cvThreshold(), we might say that the histogram
thresholding function is analogous to calling the image threshold function with the ar-
gument threshold type set to CV_THRESH TOZERO. Unfortunately, there are no convenient
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histogram thresholding functions that provide operations analogous to the other thresh-
old types. In practice, however, cvThreshHist() is the one you’ll probably want because
with real data we often end up with some bins that contain just a few data points. Such
bins are mostly noise and thus should usually be zeroed out.

Another useful function is cvCopyHist(), which (as you might guess) copies the informa-
tion from one histogram into another.
void cvCopyHist(const CvHistogram* src, CvHistogram** dst );

This function can be used in two ways. If the destination histogram *dst is a histogram
of the same size as src, then both the data and the bin ranges from src will be copied
into *dst. The other way of using cvCopyHist() is to set *dst to NULL. In this case, a new
histogram will be allocated that has the same size as src and then the data and bin
ranges will be copied (this is analogous to the image function cvCloneImage()). It is to
allow this kind of cloning that the second argument dst is a pointer to a pointer to a
histogram—unlike the src, which is just a pointer to a histogram. If *dst is NULL when
cvCopyHist() is called, then *dst will be set to the pointer to the newly allocated histo-
gram when the function returns.

Proceeding on our tour of useful histogram functions, our next new friend is cvGetMinMax
HistValue(), which reports the minimal and maximal values found in the histogram.

void cvGetMinMaxHistValue(
const CvHistogram* hist,

float* min_value,
float* max_value,
int* min_idx = NULL,
int* max_idx = NULL

);

Thus, given a histogram hist, cvGetMinMaxHistValue() will compute its largest and small-
est values. When the function returns, *min_value and *max_value will be set to those re-
spective values. If you don’t need one (or both) of these results, then you may set the cor-
responding argument to NULL. The next two arguments are optional; if you leave them set
to their default value (NULL), they will do nothing. However, if they are non-NULL pointers
to int then the integer values indicated will be filled with the location index of the mini-
mal and maximal values. In the case of multi-dimensional histograms, the arguments
min_idx and max_idx (if not NULL) are assumed to point to an array of integers whose
length is equal to the dimensionality of the histogram. If more than one bin in the histo-
gram has the same minimal (or maximal) value, then the bin that will be returned is the
one with the smallest index (in lexicographic order for multidimensional histograms).

After collecting data in a histogram, we often use cvGetMinMaxHistValue() to find the
minimum value and then “threshold away” bins with values near this minimum using
cvThreshHist() before finally normalizing the histogram via cvNormalizeHist().

Last, but certainly not least, is the automatic computation of histograms from images.
The function cvCalcHist() performs this crucial task:

void cvCalcHist(
IplImage**  image,
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CvHistogram* hist,
int accumulate = 0,
const CvArr* mask = NULL

);

The first argument, image, is a pointer to an array of IplImage* pointers.* This allows us
to pass in many image planes. In the case of a multi-channel image (e.g., HSV or RGB)
we will have to cvSplit() (see Chapter 3 or Chapter 5) that image into planes before call-
ing cvCalcHist(). Admittedly that’s a bit of a pain, but consider that frequently you’ll
also want to pass in multiple image planes that contain different filtered versions of an
image—for example, a plane of gradients or the U- and V-planes of YUV. Then what
a mess it would be when you tried to pass in several images with various numbers of
channels (and you can be sure that someone, somewhere, would want just some of those
channels in those images!). To avoid this confusion, all images passed to cvCalcHist()
are assumed (read “required”) to be single-channel images. When the histogram is pop-
ulated, the bins will be identified by the tuples formed across these multiple images. The
argument hist must be a histogram of the appropriate dimensionality (i.e., of dimen-
sion equal to the number of image planes passed in through image). The last two argu-
ments are optional. The accumulate argument, if nonzero, indicates that the histogram
hist should not be cleared before the images are read; note that accumulation allows
cvCalcHist() to be called multiple times in a data collection loop. The final argument,
mask, is the usual optional Boolean mask; if non-NULL, only pixels corresponding to non-
zero entries in the mask image will be included in the computed histogram.

Comparing Two Histograms

Yet another indispensable tool for working with histograms, first introduced by Swain
and Ballard [Swain91] and further generalized by Schiele and Crowley [Schiele96], is the
ability to compare two histograms in terms of some specific criteria for similarity. The
function cvCompareHist() does just this.

double cvCompareHist(
const CvHistogram* histi,
const CvHistogram* hist2,
int method
);
The first two arguments are the histograms to be compared, which should be of the
same size. The third argument is where we select our desired distance metric. The four
available options are as follows.

Correlation (method = CV_COMP_CORREL)

> HG)- H)()

dcorrel (Hl’ H2 ) =
JZ, HG)-HG)

* Actually, you could also use CvMat* matrix pointers here.
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where H;(i)ZHk(i)—(l/N)(zij(j)) and N equals the number of bins in the
histogram.

For correlation, a high score represents a better match than a low score. A perfect
match is 1 and a maximal mismatch is -1; a value of 0 indicates no correlation (random
association).

Chi-square (method = CV_COMP_CHISQR)

(H,(i)—-H,(i))’
(H, H)=) iy H,(i)+H, (i)

ch1 square
i

For chi-square,* alow score represents a better match than a high score. A perfect match
is 0 and a total mismatch is unbounded (depending on the size of the histogram).

Intersection (method = CV_COMP_INTERSECT)

dintersection(Hll H2) :Zmin(Hl(i): Hz(i))

For histogram intersection, high scores indicate good matches and low scores indicate
bad matches. If both histograms are normalized to 1, then a perfect match is 1 and a
total mismatch is 0.

Bhattacharyya distance (method = CV_COMP_BHATTACHARYYA)

H,(i)- H, (i)
(H, H,))= [1- L 2
;\/ZiHl(i)-Zin(i)

chattacharyya

For Bhattacharyya matching [Bhattacharyya43], low scores indicate good matches and
high scores indicate bad matches. A perfect match is 0 and a total mismatch isa 1.

With CV_COMP_BHATTACHARYYA, a special factor in the code is used to normalize the input
histograms. In general, however, you should normalize histograms before comparing
them because concepts like histogram intersection make little sense (even if allowed)
without normalization.

The simple case depicted in Figure 7-4 should clarify matters. In fact, this is about the
simplest case that could be imagined: a one-dimensional histogram with only two bins.
The model histogram has a 1.0 value in the left bin and a 0.0 value in the right bin. The
last three rows show the comparison histograms and the values generated for them by
the various metrics (the EMD metric will be explained shortly).

* The chi-square test was invented by Karl Pearson [Pearson] who founded the field of mathematical statistics.
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Histograms: Matching measures:

Model:

Correlation: | Chisquare: : Interesction ;| Bhattacharyya: | EMD:

Exact match:

1.0 0.0 1.0 0.0 0.0
Half match:

0.7 0.67 0.5 0.55 0.5
Total mis-match:

-1.0 2.0 0.0 1.0 1.0

Figure 7-4. Histogram matching measures

Figure 7-4 provides a quick reference for the behavior of different matching types, but
there is something disconcerting here, too. If histogram bins shift by just one slot—as
with the chart’s first and third comparison histograms—then all these matching methods
(except EMD) yield a maximal mismatch even though these two histograms have a
similar “shape”. The rightmost column in Figure 7-4 reports values returned by EMD,
a type of distance measure. In comparing the third to the model histogram, the EMD
measure quantifies the situation precisely: the third histogram has moved to the right
by one unit. We shall explore this measure further in the “Earth Mover’s Distance” sec-
tion to follow.

In the authors’ experience, intersection works well for quick-and-dirty matching and
chi-square or Bhattacharyya work best for slower but more accurate matches. The EMD
measure gives the most intuitive matches but is much slower.

Histogram Usage Examples

It’s probably time for some helpful examples. The program in Example 7-1 (adapted
from the OpenCV code bundle) shows how we can use some of the functions just dis-
cussed. This program computes a hue-saturation histogram from an incoming image
and then draws that histogram as an illuminated grid.

Example 7-1. Histogram computation and display

#include <cv.h>
#include <highgui.h>

int main( int argc, char** argv ) {
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Example 7-1. Histogram computation and display (continued)

IplImage* src;
if( argc == 2 8&% (src=cviLoadImage(argv[1], 1))!= 0) {

// Compute the HSV image and decompose it into separate planes.
/!

IplImage* hsv = cvCreateImage( cvGetSize(src), 8, 3 );
cvCvtColor( src, hsv, CV_BGR2HSV );

IplImage* h plane = cvCreateImage( cvGetSize(src), 8, 1 );
IplImage* s plane = cvCreateImage( cvGetSize(src), 8, 1 );
IplImage* v_plane = cvCreateImage( cvGetSize(src), 8, 1 );
IplImage* planes[] = { h_plane, s plane };
cvCvtPixToPlane( hsv, h_plane, s plane, v_plane, 0 );

// Build the histogram and compute its contents.

/N
int h bins = 30, s_bins = 32;
CvHistogram* hist;

{
int hist size[] = { h bins, s bins };
float h ranges[] = {0, 180 }; // hue is [0,180]
float s ranges[] = { 0, 255 };
float* ranges[] = { h_ranges, s ranges };

hist = cvCreateHist(
2,
hist size,
CV_HIST ARRAY,
ranges,
1
)s
}
cvCalcHist( planes, hist, 0, 0 ); //Compute histogram
cvNormalizeHist( hist[i], 1.0 ); //Normalize it

// Create an image to use to visualize our histogram.
/
int scale = 10;
IplImage* hist img = cvCreateImage(
cvSize( h bins * scale, s bins * scale ),
8,
3
)

cvZero( hist_img );

// populate our visualization with little gray squares.

//
float max_value = 0;
cvGetMinMaxHistValue( hist, 0, &max value, 0, 0 );

for( int h = 0; h < hbins; h++ ) {
for( int s = 0; s < s bins; s++ ) {
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Example 7-1. Histogram computation and display (continued)

float bin_val = cvQueryHistValue 2D( hist, h, s );
int intensity = cvRound( bin_val * 255 / max_value );
cvRectangle(
hist img,
cvPoint( h*scale, s*scale ),
cvPoint( (h+1l)*scale - 1, (s+l)*scale - 1),
CV_RGB(intensity,intensity,intensity),
CV_FILLED
);

}

cvNamedWindow( “Source”, 1 );
cvShowImage(  “Source”, src );

cvNamedWindow( “H-S Histogram”, 1 );
cvShowImage(  “H-S Histogram”, hist_img );

cviWaitKey(0);

}

In this example we have spent a fair amount of time preparing the arguments for
cvCalcHist(), which is not uncommon. We also chose to normalize the colors in the
visualization rather than normalizing the histogram itself, although the reverse
order might be better for some applications. In this case it gave us an excuse to call
cvGetMinMaxHistValue(), which was reason enough not to reverse the order.

Let’s look at a more practical example: color histograms taken from a human hand un-
der various lighting conditions. The left column of Figure 7-5 shows images of a hand in
an indoor environment, a shaded outdoor environment, and a sunlit outdoor environ-
ment. In the middle column are the blue, green, and red (BGR) histograms correspond-
ing to the observed flesh tone of the hand. In the right column are the corresponding
HSV histograms, where the vertical axis is V (value), the radius is S (saturation) and
the angle is H (hue). Notice that indoors is darkest, outdoors in the shade brighter, and
outdoors in the sun brightest. Observe also that the colors shift around somewhat as a
result of the changing color of the illuminating light.

As a test of histogram comparison, we could take a portion of one palm (e.g., the top half
of the indoor palm), and compare the histogram representation of the colors in that im-
age either with the histogram representation of the colors in the remainder of that image
or with the histogram representations of the other two hand images. Flesh tones are of-
ten easier to pick out after conversion to an HSV color space. It turns out that restricting
ourselves to the hue and saturation planes is not only sufficient but also helps with rec-
ognition of flesh tones across ethnic groups. The matching results for our experiment are
shown in Table 7-1, which confirms that lighting can cause severe mismatches in color.
Sometimes normalized BGR works better than HSV in the context of lighting changes.
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Figure 7-5. Histogram of flesh colors under indoor (upper left), shaded outdoor (middle left), and
outdoor (lower left) lighting conditions; the middle and right-hand columns display the associated
BGR and HSV histograms, respectively

Table 7-1. Histogram comparison, via four matching methods, of palm-flesh colors in upper half of
indoor palm with listed variant palm-flesh color

Comparison CORREL CHISQR INTERSECT BHATTACHARYYA
Indoor lower half 0.96 0.14 0.82 0.2
Outdoor shade 0.09 1.57 0.13 0.8
Outdoor sun -0.0 1.98 0.01 0.99

Some More Complicated Stuff

Everything we’ve discussed so far was reasonably basic. Each of the functions provided
for a relatively obvious need. Collectively, they form a good foundation for much of what
you might want to do with histograms in the context of computer vision (and probably
in other contexts as well). At this point we want to look at some more complicated rou-
tines available within OpenCV that are extremely useful in certain applications. These
routines include a more sophisticated method of comparing two histograms as well as
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tools for computing and/or visualizing which portions of an image contribute to a given
portion of a histogram.

Earth Mover’s Distance

Lighting changes can cause shifts in color values (see Figure 7-5), although such shifts
tend not to change the shape of the histogram of color values, but shift the color value
locations and thus cause the histogram-matching schemes we’ve learned about to fail. If
instead of a histogram match measure we used a histogram distance measure, then we
could still match like histograms to like histograms even when the second histogram
has shifted its been by looking for small distance measures. Earth mover’s distance
(EMD) [Rubner00] is such a metric; it essentially measures how much work it would
take to “shovel” one histogram shape into another, including moving part (or all) of the
histogram to a new location. It works in any number of dimensions.

Return again to Figure 7-4; we see the “earthshoveling” nature of EMD’s distance mea-
sure in the rightmost column. An exact match is a distance of 0. Half a match is half a
“shovel full”, the amount it would take to spread half of the left histogram into the next
slot. Finally, moving the entire histogram one step to the right would require an en-
tire unit of distance (i.e., to change the model histogram into the “totally mismatched”
histogram).

The EMD algorithm itself is quite general; it allows users to set their own distance met-
ric or their own cost-of-moving matrix. One can record where the histogram “material”
flowed from one histogram to another, and one can employ nonlinear distance met-
rics derived from prior information about the data. The EMD function in OpenCV is
cvCalcEMD2():

float cvCalcEMD2(

const CvArT* signaturei,

const CvArr* signature2,

int distance type,
CvDistanceFunction distance func = NULL,
const CvArr* cost_matrix = NULL,
CvATT* flow = NULL,
float* lower bound = NULL,
void* userdata = NULL

);
The cvCalcEMD2() function has enough parameters to make one dizzy. This may seem
rather complex for such an intuitive function, but the complexity stems from all the
subtle configurable dimensions of the algorithm.* Fortunately, the function can be used
in its more basic and intuitive form and without most of the arguments (note all the
“=NULL” defaults in the preceding code). Example 7-2 shows the simplified version.

* If you want all of the gory details, we recommend that you read the 1989 paper by S. Peleg, M. Werman,
and H. Rom, “A Unified Approach to the Change of Resolution: Space and Gray-Level,” and then take a
look at the relevant entries in the OpenCV user manual that are included in the release ...\opencv\docs\ref\
opencvref_cv.htm.
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Example 7-2. Simple EMD interface

float cvCalcEMD2(
const CvArr* signaturei,
const CvArr* signature,
int distance type
);

The parameter distance_type for the simpler version of cvCalcEMD2() is either Manhat-
tan distance (CV_DIST_L1) or Euclidean distance (CV_DIST L2). Although we’re applying the
EMD to histograms, the interface prefers that we talk to it in terms of signatures for the
first two array parameters.

These signature arrays are always of type float and consist of rows containing the his-
togram bin count followed by its coordinates. For the one-dimensional histogram of
Figure 7-4, the signatures (listed array rows) for the lefthand column of histograms
(skipping the model) would be as follows: top, [1, 0; 0, 1]; middle, [0.5, 0; 0.5, 1]; bottom,
[0, 0; 1, 1]. If we had a bin in a three-dimensional histogram with a bin count of 537 at
(%, ¥, ) index (7, 43, 11), then the signature row for that bin would be [537, 7; 43, 11]. This
is how we perform the necessary step of converting histograms into signatures.

As an example, suppose we have two histograms, hist1 and hist2, that we want to con-
vert to two signatures, sigl and sig2. Just to make things more difficult, let’s suppose
that these are two-dimensional histograms (as in the preceding code examples) of di-
mension h bins by s_bins. Example 7-3 shows how to convert these two histograms into
two signatures.

Example 7-3. Creating signatures from histograms for EMD

//Convert histograms into signatures for EMD matching
//assume we already have 2D histograms histi and hist2

//that are both of dimension h_bins by s bins (though for EMD,
// histograms don’t have to match in size).

/

CvMat* sigl,sig2;

int numrows = h bins*s bins;

//Create matrices to store the signature in

I

sigl = cvCreateMat(numrows, 3, CV_32FC1); //1 count + 2 coords = 3
sig2 = cvCreateMat(numrows, 3, CV_32FC1); //sigs are of type float.

//Fill signatures for the two histograms

//

for( int h = 0; h < hbins; h++ ) {

for( int s = 0; s < s bins; s++ ) {

float bin val = cvQueryHistValue 2D( hist1, h, s );
cvSet2D(sigl,h*s bins + s,0,cvScalar(bin val)); //bin value
cvSet2D(sigl,h*s bins + s,1,cvScalar(h)); //Coord 1
cvSet2D(sigl,h*s bins + s,2,cvScalar(s)); //Coord 2
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Example 7-3. Creating signatures from histograms for EMD (continued)

bin_val = cvQueryHistValue 2D( hist2, h, s );
cvSet2D(sig2,h*s bins + s,0,cvScalar(bin val)); //bin value
cvSet2D(sig2,h*s bins + s,1,cvScalar(h)); //Coord 1
cvSet2D(sig2,h*s bins + s,2,cvScalar(s)); //Coord 2

}

Notice in this example* that the function cvSet2D() takes a CvScalar() array to set its
value even though each entry in this particular matrix is a single float. We use the inline
convenience macro cvScalar() to accomplish this task. Once we have our histograms
converted into signatures, we are ready to get the distance measure. Choosing to mea-
sure by Euclidean distance, we now add the code of Example 7-4.

Example 7-4. Using EMD to measure the similarity between distributions

// Do EMD AND REPORT

/
float emd = cvCalcEMD2(sig1,sig2,CV_DIST L2);
printf(“%f; ”,emd);

Back Projection

Back projection is a way of recording how well the pixels (for cvCalcBackProject()) or
patches of pixels (for cvCalcBackProjectPatch()) fit the distribution of pixels in a histo-
gram model. For example, if we have a histogram of flesh color then we can use back
projection to find flesh color areas in an image. The function call for doing this kind of
lookup is:
void cvCalcBackProject(
IplImage** image,
CvATT* back project,
const CvHistogram* hist
);
We have already seen the array of single channel images IplImage** image in the func-
tion cvCalcHist() (see the section “Basic Manipulations with Histograms”). The number
of images in this array is exactly the same—and in the same order—as used to construct
the histogram model hist. Example 7-1 showed how to convert an image into single-
channel planes and then make an array of them. The image or array back _project is a
single-channel 8-bit or floating-point image of the same size as the input images in the
array. The values in back _project are set to the values in the associated bin in hist. If the
histogram is normalized, then this value can be associated with a conditional probabil-
ity value (i.e., the probability that a pixel in image is a member of the type characterized

* Using cvSetReal2D() or cvmSet() would have been more compact and efficient here, but the example is
clearer this way and the extra overhead is small compared to the actual distance calculation in EMD.
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by the histogram in hist).* In Figure 7-6, we use a flesh-color histogram to derive a
probability of flesh image.

Model H-5 Histogram \:\\E\E [l

Test H-5 Histogram

- Jlo][x]);

Figure 7-6. Back projection of histogram values onto each pixel based on its color: the HSV flesh-
color histogram (upper left) is used to convert the hand image (upper right) into the flesh-color
probability image (lower right); the lower left panel is the histogram of the hand image

* Specifically, in the case of our flesh-tone H-S histogram, if Cis the color of the pixel and F is the prob-
ability that a pixel is flesh, then this probability map gives us p(C|F), the probability of drawing that color
if the pixel actually is flesh. This is not quite the same as p(F|C), the probability that the pixel is flesh given
its color. However, these two probabilities are related by Bayes’ theorem [Bayes1763] and so, if we know
the overall probability of encountering a flesh-colored object in a scene as well as the total probability of
encountering of the range of flesh colors, then we can compute p(F|C) from p(C|F). Specifically, Bayes’
theorem establishes the following relation:

p(F|C>:%p<C|F>
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A %
" When back project isa byte image rather than a float image, you
.ls should either not normalize the histogram or else scale it up before use.
T 4kés The reason is that the highest possible value in a normalized histogram
* is 1, so anythingless than that will be rounded down to 0 in the 8-bit im-
age. You might also need to scale back_project in order to see the values
with your eyes, depending on how high the values are in your histogram.

Patch-based back projection

We can use the basic back-projection method to model whether or not a particular pixel
is likely to be a member of a particular object type (when that object type was modeled
by a histogram). This is not exactly the same as computing the probability of the pres-
ence of a particular object. An alternative method would be to consider subregions of an
image and the feature (e.g., color) histogram of that subregion and to ask whether the
histogram of features for the subregion matches the model histogram; we could then
associate with each such subregion a probability that the modeled object is, in fact, pres-
ent in that subregion.

Thus, just as cvCalcBackProject() allows us to compute if a pixel might be part of a
known object, cvCalcBackProjectPatch() allows us to compute if a patch might contain
a known object. The cvCalcBackProjectPatch() function uses a sliding window over the
entire input image, as shown in Figure 7-7. At each location in the input array of images,
all the pixels in the patch are used to set one pixel in the destination image correspond-
ing to the center of the patch. This is important because many properties of images such
as textures cannot be determined at the level of individual pixels, but instead arise from
groups of pixels.

For simplicity in these examples, we've been sampling color to create our histogram
models. Thus in Figure 7-6 the whole hand “lights up” because pixels there match the
flesh color histogram model well. Using patches, we can detect statistical properties that
occur over local regions, such as the variations in local intensity that make up a tex-
ture on up to the configuration of properties that make up a whole object. Using local
patches, there are two ways one might consider applying cvCalcBackProjectPatch(): as a
region detector when the sampling window is smaller than the object and as an object
detector when the sampling window is the size of the object. Figure 7-8 shows the use
of cvCalcBackProjectPatch() as a region detector. We start with a histogram model of
palm-flesh color and a small window is moved over the image such that each pixel in
the back projection image records the probability of palm-flesh at that pixel given all the
pixels in the surrounding window in the original image. In Figure 7-8 the hand is much
larger than the scanning window and the palm region is preferentially detected. Figure
7-9 starts with a histogram model collected from blue mugs. In contrast to Figure 7-8
where regions were detected, Figure 7-9 shows how cvCalcBackProjectPatch() can be
used as an object detector. When the window size is roughly the same size as the objects
we are hoping to find in an image, the whole object “lights up” in the back projection
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Figure 7-7. Back projection: a sliding patch over the input image planes is used to set the correspond-
ing pixel (at the center of the patch) in the destination image; for normalized histogram models, the
resulting image can be interpreted as a probability map indicating the possible presence of the object
(this figure is taken from the OpenCV reference manual)

image. Finding peaks in the back projection image then corresponds to finding the lo-
cation of objects (in Figure 7-9, a mug) that we are looking for.
The function provided by OpenCV for back projection by patches is:

void cvCalcBackProjectPatch(
IplImage**  images,

CvATrT* dst,

CvSize patch size,
CvHistogram* hist,

int method,
float factor

);
Here we have the same array of single-channel images that was used to create the histo-
gram using cvCalcHist(). However, the destination image dst is different: it can only be
a single-channel, floating-point image with size (images[0][0].width - patch size.x + 1,
images[0][0].height - patch size.y + 1). The explanation for this size (see Figure 7-7)
is that the center pixel in the patch is used to set the corresponding location in dst,
so we lose half a patch dimension along the edges of the image on every side. The pa-
rameter patch size is exactly what you would expect (the size of the patch) and may be
set using the convenience macro cvSize(width, height). We are already familiar with
the histogram parameter; as with cvCalcBackProject(), this is the model histogram to
which individual windows will be compared. The parameter for comparison method
takes as arguments exactly the same method types as used in cvCompareHist() (see the
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Figure 7-8. Back projection used for histogram object model of flesh tone where the window (small
white box in upper right frame) is much smaller than the hand; here, the histogram model was of
palm-color distribution and the peak locations tend to be at the center of the hand

“Comparing Two Histograms” section).* The final parameter, factor, is the normalization
level; this parameter is the same as discussed previously in connection with cvNor-
malizeHist(). You can set it to 1 or, as a visualization aid, to some larger number. Be-
cause of this flexibility, you are always free to normalize your hist model before using
cvCalcBackProjectPatch().

A final question comes up: Once we have a probability of object image, how do we
use that image to find the object that we are searching for? For search, we can use the
cvMinMaxLoc() discussed in Chapter 3. The maximum location (assuming you smooth
a bit first) is the most likely location of the object in an image. This leads us to a slight
digression, template matching.

* You must be careful when choosing a method, because some indicate best match with a return value of 1
and others with a value of 0.
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Figure 7-9. Using cvCalcBackProjectPatch() to locate an object (here, a coffee cup) whose size ap-
proximately matches the patch size (white box in upper right panel): the sought object is modeled by
a hue-saturation histogram (upper left), which can be compared with an HS histogram for the image
as a whole (lower left); the result of cvCalcBackProjectPatch() (lower right) is that the object is easily
picked out from the scene by virtue of its color

Template Matching

Template matching via cvMatchTemplate() is not based on histograms; rather, the func-
tion matches an actual image patch against an input image by “sliding” the patch over
the input image using one of the matching methods described in this section.

If, as in Figure 7-10, we have an image patch containing a face, then we can slide that
face over an input image looking for strong matches that would indicate another face is
present. The function call is similar to that of cvCalcBackProjectPatch():
void cvMatchTemplate(
const CvArr* image,
const CvArr* templ,
CvATT* result,
int method
);
Instead of the array of input image planes that we saw in cvCalcBackProjectPatch(),
here we have a single 8-bit or floating-point plane or color image as input. The match-
ing model in templ is just a patch from a similar image containing the object for which
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Figure 7-10. cvMatchTemplate() sweeps a template image patch across another image looking for
matches

you are searching. The output object image will be put in the result image, which is a
single-channel byte or floating-point image of size (images->width - patch size.x + 1,
rimages->height - patch size.y + 1), as we saw previously in cvCalcBackProjectPatch().
The matching method is somewhat more complex, as we now explain. We use I to denote
the input image, T the template, and R the result.

Square difference matching method (method = CV_TM_SQDIFF)

These methods match the squared difference, so a perfect match will be 0 and bad
matches will be large:

R (6, 3)= D [T(x, )= I(x+x,y+ )]

Correlation matching methods (method = CV_TM_CCORR)

These methods multiplicatively match the template against the image, so a perfect match
will be large and bad matches will be small or 0.

Rccorr (x,y)= Z[T(x’>}’/)' I(x+x'>}’+)’,)]2

Xy
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Correlation coefficient matching methods (method = CV_TM_CCOEFF)

These methods match a template relative to its mean against the image relative to its
mean, so a perfect match will be 1 and a perfect mismatch will be —1; a value of 0 simply
means that there is no correlation (random alignments).

Rccoeff (x,y): Z[Tl(x’,)/) * I,(X+x,,)’+}/)]2

Xy
T/(x/ y/)_T(x/ y/)_ 1
’ ’ (w.h)z T(x",y")
fr
1
I'(x+x,y+y)=1(x+x",y+y)—
Iy Iy (w-h)z I(x+x",y+y")

v
X"y

Normalized methods

For each of the three methods just described, there are also normalized versions first
developed by Galton [Galton] as described by Rodgers [Rodgers88]. The normalized
methods are useful because, as mentioned previously, they can help reduce the effects
of lighting differences between the template and the image. In each case, the normaliza-
tion coeflicient is the same:

Z(x,y)= z,T(x’,y’)2 . ZI(x +x, y+x')
Xy xy

The values for method that give the normalized computations are listed in Table 7-2.

Table 7-2. Values of the method parameter for normalized template matching

Value of method parameter Computed result
R . (X,y)
CV_TM_SQDIFF_NORMED R (x,y)=—24 """
- - - sq_diff_normed y Z(X,y)
R (X:y)
CV_TM_CCORR_NORMED R o (X y):L’V
S : Z(x,y)
R e (X:Y)
CV_TM_CCOEFF_NORMED R vomeg (X )=t XY
- - Z(x,y)

As usual, we obtain more accurate matches (at the cost of more computations) as we
move from simpler measures (square difference) to the more sophisticated ones (corre-
lation coeflicient). It’s best to do some test trials of all these settings and then choose the
one that best trades off accuracy for speed in your application.
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Again, be careful when interpreting your results. The square-difference
methods show best matches with a minimum, whereas the correlation
%L+ and correlation-coefficient methods show best matches at maximum

* points.

As in the case of cvCalcBackProjectPatch(), once we use cvMatchTemplate() to obtain a
matching result image we can then use cvMinMaxLoc() to find the location of the best
match. Again, we want to ensure there’s an area of good match around that point in
order to avoid random template alignments that just happen to work well. A good
match should have good matches nearby, because slight misalignments of the template
shouldn’t vary the results too much for real matches. Looking for the best matching
“hill” can be done by slightly smoothing the result image before seeking the maximum
(for correlation or correlation-coefficient) or minimum (for square-difference) match-
ing methods. The morphological operators can also be helpful in this context.

Example 7-5 should give you a good idea of how the different template matching tech-
niques behave. This program first reads in a template and image to be matched and then
performs the matching via the methods we’ve discussed here.

Example 7-5. Template matching

// Template matching.
//  Usage: matchTemplate image template
//
#include <cv.h>
#include <cxcore.h>
#include <highgui.h>
#include <stdio.h>
int main( int argc, char** argv ) {
IplImage *src, *templ,*ftmp[6]; //ftmp will hold results
int i;
if( arge == 3){
//Read in the source image to be searched:
if((src=cvLoadImage(argv[1], 1))== 0) {
printf(“Error on reading src image %s\n”,argv[i]);
return(-1);
}
//Read in the template to be used for matching:
if((templ=cvLoadImage(argv[2], 1))== 0) {
printf(“Error on reading template %s\n”,argv[2]);
return(-1);
}
//ALLOCATE OUTPUT IMAGES:
int iwidth = src>width - templ->width + 1;
int iheight = src->height - templ->height + 1;
for(i=0; i<6; ++1i){
ftmp[i] = cvCreateImage(
cvSize(iwidth,iheight),32,1);
}
//DO THE MATCHING OF THE TEMPLATE WITH THE IMAGE:
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Example 7-5. Template matching (continued)

for(i=0; i<6; ++i){

cvMatchTemplate( src, templ, ftmp[i], i);

cvNormalize(ftmp[i],ftmp[i],1,0,CV_MINMAX)*;
}
//DISPLAY
cvNamedWindow( “Template”, 0 );
cvShowImage(  “Template”, templ );
cvNamedwindow( “Image”, 0 );
cvShowImage(  “Image”, src );
cvNamedwindow( “SQDIFF”, 0 );
cvShowImage(  “SQDIFF”, ftmp[o] );
cvNamedWindow( “SQDIFF _NORMED”, 0 );
cvShowImage(  “SQDIFF NORMED”, ftmp[1] );
cvNamedWindow( “CCORR”, 0 );
cvShowImage(  “CCORR”, ftmp[2] );
cvNamedWindow( “CCORR_NORMED”, 0 );
cvShowImage(  “CCORR_NORMED”, ftmp[3] );
cvNamedWindow( “CCOEFF”, 0 );
cvShowImage(  “CCOEFF”, ftmp[4] );
cvNamedWindow( “CCOEFF_NORMED”, 0 );
cvShowImage(  “CCOEFF_NORMED”, ftmp[5] );
//LET USER VIEW RESULTS:
cviWaitKey(0);

}
else { printf(“Call should be: ”
“matchTemplate image template \n”);}

}

Note the use of cvNormalize() in this code, which allows us to display the results in a
consistent way (recall that some of the matching methods can return negative-valued
results. We use the CV_MINMAX flag when normalizing; this tells the function to shift and
scale the floating-point images so that all returned values are between 0 and 1. Figure
7-11 shows the results of sweeping the face template over the source image (shown in
Figure 7-10) using each of cvMatchTemplate()’s available matching methods. In outdoor
imagery especially, it’s almost always better to use one of the normalized methods.
Among those, correlation coefficient gives the most clearly delineated match—but, as
expected, at a greater computational cost. For a specific application, such as automatic
parts inspection or tracking features in a video, you should try all the methods and find
the speed and accuracy trade-off that best serves your needs.

* You can often get more pronounced match results by raising the matches to a power (e.g., cvPow(ftmp[i],
ftmp[i], 5); ). In the case of a result which is normalized between 0.0 and 1.0, then you can immediately
see that a good match of 0.99 taken to the fifth power is not much reduced (0.99°=0.95) while a poorer score
of 0.20 is reduced substantially (0.50°=0.03).
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Figure 7-11. Match results of six matching methods for the template search depicted in Figure 7-10:
the best match for square difference is 0 and for the other methods it’s the maximum point; thus,
matches are indicated by dark areas in the left column and by bright spots in the other two columns

Exercises

1. Generate 1,000 random numbers r, between 0 and 1. Decide on a bin size and then
take a histogram of 1/r,.

a. Are there similar numbers of entries (i.e., within a factor of £10) in each histo-
gram bin?

b. Propose a way of dealing with distributions that are highly nonlinear so that
each bin has, within a factor of 10, the same amount of data.

2. Take three images of a hand in each of the three lighting conditions discussed in
the text. Use cvCalcHist() to make an RGB histogram of the flesh color of one of the
hands photographed indoors.

a. Try using just a few large bins (e.g., 2 per dimension), a medium number of bins
(16 per dimension) and many bins (256 per dimension). Then run a matching
routine (using all histogram matching methods) against the other indoor light-
ing images of hands. Describe what you find.

b. Now add 8 and then 32 bins per dimension and try matching across lighting
conditions (train on indoor, test on outdoor). Describe the results.

3. As in exercise 2, gather RGB histograms of hand flesh color. Take one of the in-
door histogram samples as your model and measure EMD (earth mover’s distance)
against the second indoor histogram and against the first outdoor shaded and first
outdoor sunlit histograms. Use these measurements to set a distance threshold.
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a. Using this EMD threshold, see how well you detect the flesh histogram of the

third indoor histogram, the second outdoor shaded, and the second outdoor
sunlit histograms. Report your results.

. Take histograms of randomly chosen nonflesh background patches to see how

well your EMD discriminates. Can it reject the background while matching the
true flesh histograms?

Using your collection of hand images, design a histogram that can determine un-
der which of the three lighting conditions a given image was captured. Toward this
end, you should create features—perhaps sampling from parts of the whole scene,
sampling brightness values, and/or sampling relative brightness (e.g., from top to
bottom patches in the frame) or gradients from center to edges.

Assemble three histograms of flesh models from each of our three lighting
conditions.

a. Use the first histograms from indoor, outdoor shaded, and outdoor sunlit as

your models. Test each one of these against the second images in each respec-
tive class to see how well the flesh-matching score works. Report matches.

. Use the “scene detector” you devised in part a, to create a “switching histo-

gram” model. First use the scene detector to determine which histogram model
to use: indoor, outdoor shaded, or outdoor sunlit. Then use the corresponding
flesh model to accept or reject the second flesh patch under all three condi-
tions. How well does this switching model work?

6. Create a flesh-region interest (or “attention”) detector.

a. Just indoors for now, use several samples of hand and face flesh to create an

RGB histogram.

b. Use cvCalcBackProject() to find areas of flesh.

c. Use cvErode() from Chapter 5 to clean up noise and then cvFloodFill() (from

the same chapter) to find large areas of flesh in an image. These are your “atten-
tion” regions.

7. Try some hand-gesture recognition. Photograph a hand about 2 feet from the cam-
era, create some (nonmoving) hand gestures: thumb up, thumb left, thumb right.

a. Using your attention detector from exercise 6, take image gradients in the area

of detected flesh around the hand and create a histogram model for each of the
three gestures. Also create a histogram of the face (if there’s a face in the image)
so that you’ll have a (nongesture) model of that large flesh region. You might
also take histograms of some similar but nongesture hand positions, just so
they won’t be confused with the actual gestures.

. Test for recognition using a webcam: use the flesh interest regions to find “po-

tential hands”; take gradients in each flesh region; use histogram matching
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above a threshold to detect the gesture. If two models are above threshold, take
the better match as the winner.

c. Move your hand 1-2 feet further back and see if the gradient histogram can
still recognize the gestures. Report.

8. Repeat exercise 7 but with EMD for the matching. What happens to EMD as you
move your hand back?

9. With the same images as before but with captured image patches instead of his-
tograms of the flesh around the hand, use cvMatchTemplate() instead of histogram
matching. What happens to template matching when you move your hand back-
wards so that its size is smaller in the image?
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CHAPTER 8
Contours

Although algorithms like the Canny edge detector can be used to find the edge pixels
that separate different segments in an image, they do not tell you anything about those
edges as entities in themselves. The next step is to be able to assemble those edge pix-
els into contours. By now you have probably come to expect that there is a convenient
function in OpenCV that will do exactly this for you, and indeed there is: cvFindCon-
tours(). We will start out this chapter with some basics that we will need in order to use
this function. Specifically, we will introduce memory storages, which are how OpenCV
functions gain access to memory when they need to construct new objects dynamically;
then we will learn some basics about sequences, which are the objects used to represent
contours generally. With those concepts in hand, we will get into contour finding in
some detail. Thereafter we will move on to the many things we can do with contours
after they’ve been computed.

Memory Storage

OpenCV uses an entity called a memory storage as its method of handling memory al-
location for dynamic objects. Memory storages are linked lists of memory blocks that
allow for fast allocation and de-allocation of continuous sets of blocks. OpenCV func-
tions that require the ability to allocate memory as part of their normal functionality
will require access to a memory storage from which to get the memory they require
(typically this includes any function whose output is of variable size).

Memory storages are handled with the following four routines:

CvMemStorage* cvCreateMemStorage(
int block size = 0

);

void cvReleaseMemStorage(
CvMemStorage** storage

).

)

void cvClearMemStorage(
CvMemStorage* storage

).

)
void* cvMemStorageAlloc(
CvMemStorage* storage,
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size t size
);
To create a memory storage, the function cvCreateMemStorage() is used. This function
takes as an argument a block size, which gives the size of memory blocks inside the
store. If this argument is set to 0 then the default block size (64kB) will be used. The
function returns a pointer to a new memory store.

The cvReleaseMemStorage() function takes a pointer to a valid memory storage and then
de-allocates the storage. This is essentially equivalent to the OpenCV de-allocations of
images, matrices, and other structures.

You can empty a memory storage by calling cvClearMemStorage(), which also takes a
pointer to a valid storage. You must be aware of an important feature of this function:
it is the only way to release (and thereafter reuse) memory allocated to a memory stor-
age. This might not seem like much, but there will be other routines that delete objects
inside of memory storages (we will introduce one of these momentarily) but do not re-
turn the memory they were using. In short, only cvClearMemStorage() (and, of course,
cvReleaseMemStorage()) recycle the storage memory.* Deletion of any dynamic structure
(CvSeq, CvSet, etc.) never returns any memory back to storage (although the structures
are able to reuse some memory once taken from the storage for their own data).

You can also allocate your own continuous blocks from a memory store—in a man-
ner analogous to the way malloc() allocates memory from the heap—with the func-
tion cvMemStorageAlloc(). In this case you simply provide a pointer to the storage and
the number of bytes you need. The return is a pointer of type void* (again, similar to
malloc()).

Sequences

One kind of object that can be stored inside a memory storage is a sequence. Sequences
are themselves linked lists of other structures. OpenCV can make sequences out of
many different kinds of objects. In this sense you can think of the sequence as some-
thing similar to the generic container classes (or container class templates) that exist in
various other programming languages. The sequence construct in OpenCV is actually
a deque, so it is very fast for random access and for additions and deletions from either
end but a little slow for adding and deleting objects in the middle.

The sequence structure itself (see Example 8-1) has some important elements that you
should be aware of. The first, and one you will use often, is total. This is the total num-
ber of points or objects in the sequence. The next four important elements are point-
ers to other sequences: h_prev, h next, v_prev, and v_next. These four pointers are part
of what are called CV TREE_NODE_FIELDS; they are used not to indicate elements inside of
the sequence but rather to connect different sequences to one another. Other objects
in the OpenCV universe also contain these tree node fields. Any such objects can be

* Actually, one other function, called cvRestoreMemStoragePos(), can restore memory to the storage. But
this function is primarily for the library’s internal use and is beyond the scope of this book.
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assembled, by means of these pointers, into more complicated superstructures such as
lists, trees, or other graphs. The variables h_prevand h next can be used alone to create a
simple linked list. The other two, v_prev and v_next, can be used to create more complex
topologies that relate nodes to one another. It is by means of these four pointers that
cvFindContours() will be able to represent all of the contours it finds in the form of rich
structures such as contour trees.

Example 8-1. Internal organization of CvSeq sequence structure

typedef struct CvSeq {

int flags; // miscellaneous flags
int header size; // size of sequence header
CvSeg* h prev; // previous sequence
CvSeg* h_next; // next sequence
CvSeq* V_prev; // 2nd previous sequence
CvSeg* v _next // 2nd next sequence
int total; // total number of elements
int elem size; // size of sequence element in byte
char* block max; // maximal bound of the last block
char* ptr; // current write pointer
int delta_elems; // how many elements allocated
// when the sequence grows
CvMemStorage* storage; // where the sequence is stored
CvSegBlock* free blocks; // free blocks list
CvSegBlock* first; // pointer to the first sequence block
}
Creating a Sequence

As we have alluded to already, sequences can be returned from various OpenCV func-
tions. In addition to this, you can, of course, create sequences yourself. Like many ob-
jects in OpenCYV, there is an allocator function that will create a sequence for you and
return a pointer to the resulting data structure. This function is called cvCreateSeq().

CvSeq* cvCreateSeq(

int seq flags,
int header size,
int elem size,

CvMemStorage* storage
);
This function requires some additional flags, which will further specify exactly what
sort of sequence we are creating. In addition it needs to be told the size of the sequence
header itself (which will always be sizeof(CvSeq)*) and the size of the objects that the se-
quence will contain. Finally, a memory storage is needed from which the sequence can
allocate memory when new elements are added to the sequence.

* Obviously, there must be some other value to which you can set this argument or it would not exist. This ar-
gument is needed because sometimes we want to extend the CvSeq “class”. To extend CvSeq, you create your
own struct using the CV_SEQUENCE_FIELDS() macro in the structure definition of the new type; note that,
when using an extended structure, the size of that structure must be passed. This is a pretty esoteric activity
in which only serious gurus are likely to participate.
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These flags are of three different categories and can be combined using the bitwise OR
operator. The first category determines the type of objects* from which the sequence is
to be constructed. Many of these types might look a bit alien to you, and some are pri-
marily for internal use by other OpenCV functions. Also, some of the flags are mean-
ingful only for certain kinds of sequences (e.g., CV_SEQ FLAG CLOSED is meaningful only
for sequences that in some way represent a polygon).

CV_SEQ_ELTYPE_POINT

(xy)
CV_SEQ_ELTYPE_CODE

Freeman code: 0..7
CV_SEQ_ELTYPE_POINT

Pointer to a point: &(x,y)
CV_SEQ_ELTYPE_INDEX

Integer index of a point: #(x,y)
CV_SEQ_ELTYPE_GRAPH_EDGE

&next_o,&next_d,&vtx_o,&vtx_d
CV_SEQ_ELTYPE_GRAPH_VERTEX

first_edge, &(x,y)
CV_SEQ_ELTYPE_TRIAN_ATR

Vertex of the binary tree
CV_SEQ_ELTYPE_CONNECTED COMP

Connected component
CV_SEQ_ELTYPE_POINT3D

(xy,2)

The second category indicates the nature of the sequence, which can be any of the
following.

CV_SEQ_KIND_SET
A set of objects
CV_SEQ_KIND CURVE
A curve defined by the objects

CV_SEQ_KIND BIN TREE
A binary tree of the objects

* The types in this first listing are used only rarely. To create a sequence whose elements are tuples of num-
bers, use CV_325C2, CV_32FC4, etc. To create a sequence of elements of your own type, simply pass 0 and
specify the correct elem size.
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CV_SEQ_KIND_ GRAPH
A graph with the objects as nodes

The third category consists of additional feature flags that indicate some other property

of the sequence.

CV_SEQ_FLAG_CLOSED

Sequence is closed (polygons)

CV_SEQ FLAG_SIMPLE

Sequence is simple (polygons)

CV_SEQ_FLAG_CONVEX

Sequence is convex (polygons)

CV_SEQ_FLAG_HOLE

Sequence is a hole (polygons)

Deleting a Sequence

void cvClearSeq(

CvSeg* seq
);
When you want to delete a sequence, you can use cvClearSeq(), a routine that clears all
elements of the sequence. However, this function does not return allocated blocks in the
memory store either to the store or to the system; the memory allocated by the sequence
can be reused only by the same sequence. If you want to retrieve that memory for some
other purpose, you must clear the memory store via cvClearMemStore().

Direct Access to Sequence Elements

Often you will find yourself wanting to directly access a particular member of a se-
quence. Though there are several ways to do this, the most direct way—and the correct
way to access a randomly chosen element (as opposed to one that you happen to know is
at the ends)—is to use cvGetSeqElem().

char* cvGetSeqtlem( seq, index )

More often than not, you will have to cast the return pointer to whatever type you know
the sequence to be. Here is an example usage of cvGetSeqElem() to print the elements in
a sequence of points (such as might be returned by cvFindContours(), which we will get
to shortly):
for( int i=0; i<seg->total; ++i ) {
CvPoint* p = (CvPoint*)cvGetSeqElem ( seq, i );
printf(“(%d,%d)\n”, p->x, p->y );

You can also check to see where a particular element is located in a sequence. The func-
tion cvSeqElemIdx() does this for you:
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int cvSeqElemIdx(

const CvSeq* seq,

const void* element,
CvSegBlock** block = NULL
);
This check takes a bit of time, so it is not a particularly efficient thing to do (the time for
the search is proportional to the size of the sequence). Note that cvSeqelemIdx() takes
as arguments a pointer to your sequence and a pointer to the element for which you
are searching.* Optionally, you may also supply a pointer to a sequence memory block
pointer. If this is non-NULL, then the location of the block in which the sequence element
was found will be returned.

Slices, Copying, and Moving Data

Sequences are copied with cvCloneSeq(), which does a deep copy of a sequence and cre-
ates another entirely separate sequence structure.
CvSeq* cvCloneSeq(
const CvSeq* seq,
CvMemStorage* storage = NULL
)
This routine is actually just a wrapper for the somewhat more general routine cvSeq
Slice(). This latter routine can pull out just a subsection of an array; it can also do either
a deep copy or just build a new header to create an alternate “view” on the same data
elements.

CvSeq* cvSeqSlice(
const CvSeq* seq,

CvSlice slice,
CvMemStorage* storage = NULL,
int copy data = 0

);

You will notice that the argument slice to cvSegSlice() is of type CvSlice. A slice can be
defined using either the convenience function cvSlice(a,b) or the macro CV_WHOLE SEQ.
In the former case, only those elements starting at a and continuing through b are in-
cluded in the copy (b may also be set to CV_WHOLE_SEQ_END_INDEX to indicate the end of
the array). The argument copy data is how we decide if we want a “deep” copy (i.e., if we
want the data elements themselves to be copied and for those new copies to be the ele-
ments of the new sequence).

Slices can be used to specify elements to remove from a sequence using cvSeqRemoveSlice()
or to insert into a sequence using cvSeqInsertSlice().

void cvSeqRemoveSlice(
CvSeqg* seq,
CvSlice slice

)

* Actually, it would be more accurate to say that cvSeqElemIdx() takes the pointer being searched for. This is
because cvSeqElemIdx() is not searching for an element in the sequence that is equal to *element; rather, it
is searching for the element that is at the location given by element.
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void cvSeqInsertSlice(
CvSeqg* seq,
int before index,
const CvArr* from arr

);
With the introduction of a comparison function, it is also possible to sort or search a
(sorted) sequence. The comparison function must have the following prototype:

typedef int (*CvCmpFunc)(const void* a, const void* b, void* userdata );

Here a and b are pointers to elements of the type being sorted, and userdata is just a
pointer to any additional data structure that the caller doing the sorting or searching
can provide at the time of execution. The comparison function should return -1 if a is
greater than b, +1if a isless than b, and 0 if a and b are equal.

With such a comparison function defined, a sequence can be sorted by cvSeqSort(). The
sequence can also be searched for an element (or for a pointer to an element) elem using
cvSeqSearch(). This searching is done in order O(log n) time if the sequence is already
sorted (is_sorted=1). If the sequence is unsorted, then the comparison function is not
needed and the search will take O(n) time. On completion, the search will set *elem idx
to the index of the found element (if it was found at all) and return a pointer to that ele-
ment. If the element was not found, then NULL is returned.

void cvSegSort(

CvSeqg* seq,
CvCmpFunc func,
void* userdata = NULL

)

char* cvSeqSearch(

CvSeqg* seq,

const void* elem,

CvCmpFunc func,

int is_sorted,

int* elem_idx,

void* userdata = NULL

);
A sequence can be inverted (reversed) in a single call with the function cvSegInvert().
This function does not change the data in any way, but it reorganizes the sequence so
that the elements appear in the opposite order.

void cvSeqInvert(

CvSeqg* seq
);
OpenCV also supports a method of partitioning a sequence* based on a user-supplied
criterion via the function cvSeqPartition(). This partitioning uses the same sort of com-
parison function as described previously but with the expectation that the function will
return a nonzero value if the two arguments are equal and zero if they are not (i.e., the
opposite convention as is used for searching and sorting).

* For more on partitioning, see Hastie, Tibshirani, and Friedman [Hastie01].
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int cvSegPartition(
const CvSeg* seq,
CvMemStorage* storage,

CvSeq** labels,
CvCmpFunc is_equal,
void* userdata

);

The partitioning requires a memory storage so that it can allocate memory to express
the output of the partitioning. The argument labels should be a pointer to a sequence
pointer. When cvSegPartition() returns, the result will be that labels will now indicate
a sequence of integers that have a one-to-one correspondence with the elements of the
partitioned sequence seq. The values of these integers will be, starting at 0 and incre-
menting from there, the “names” of the partitions that the points in seq were to be as-
signed. The pointer userdata is the usual pointer that is just transparently passed to the
comparison function.

In Figure 8-1, a group of 100 points are randomly distributed on 100-by-100 canvas.
Then cvSeqPartition() is called on these points, where the comparison function is based
on Euclidean distance. The comparison function is set to return true (1) if the distance
is less than or equal to 5 and to return false (0) otherwise. The resulting clusters are la-
beled with their integer ordinal from labels.

Using a Sequence As a Stack

As stated earlier, a sequence in OpenCV is really a linked list. This means, among other
things, that it can be accessed efficiently from either end. As a result, it is natural to use
a sequence of this kind as a stack when circumstances call for one. The following six
functions, when used in conjunction with the CvSeq structure, implement the behavior
required to use the sequence as a stack (more properly, a deque, because these functions
allow access to both ends of the list).

char* cvSeqPush(
CvSeg* seq,
void* element = NULL
);
char* cvSeqPushFront(
CvSeg* seq,
void* element = NULL
);
void  cvSeqPop(
CvSeq* seq,
void* element = NULL
);
void  cvSeqPopFront(
CvSeg* seq,
void* element = NULL
);
void cvSeqPushMulti(
CvSeg* seq,
void* elements,
int count,
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Figure 8-1. A sequence of 100 points on a 100-by-100 canvas, partitioned by distance D < 5

int in front = 0
);
void cvSeqPopMulti(
CvSeq* seq,
void* elements,
int count,
int in front = 0
);
The primary modes of accessing the sequence are cvSeqPush(), cvSeqPushFront(),
cvSeqPop(), and cvSeqPopFront(). Because these routines act on the ends of the sequence,
all of them operate in O(]) time (i.e., independent of the size of the sequence). The Push
functions return an argument to the element pushed into the sequence, and the Pop
functions will optionally save the popped element if a pointer is provided to a location
where the object can be copied. The cvSeqPushMulti() and cvSeqPopMulti() variants will
push or pop several items at a time. Both take a separate argument to distinguish the
front from the back; you can set in front to either CV_FRONT (1) or to CV BACK (0) and so
determine from where you’ll be pushing or popping.
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Inserting and Removing Elements

char* cvSeqInsert(
CvSeg* seq,
int before index,
void* element = NULL
);
void cvSeqRemove(
CvSeg* seq,
int index
);
Objects can be inserted into and removed from the middle of a sequence by using
cvSegInsert() and cvSeqRemove(), respectively, but remember that these are not very fast.
On average, they take time proportional to the total size of the sequence.

Sequence Block Size

One function whose purpose may not be obvious at first glance is cvSetSegBlockSize().
This routine takes as arguments a sequence and a new block size, which is the size of
blocks that will be allocated out of the memory store when new elements are needed
in the sequence. By making this size big you are less likely to fragment your sequence
across disconnected memory blocks; by making it small you are less likely to waste
memory. The default value is 1,000 bytes, but this can be changed at any time.*
void  cvSetSegqBlockSize(
CvSeq* seq,
Int delta_elems
);

Sequence Readers and Sequence Writers

When you are working with sequences and you want the highest performance, there are
some special methods for accessing and modifying them that (although they require a
bit of special care to use) will let you do what you want to do with a minimum of over-
head. These functions make use of special structures to keep track of the state of what
they are doing; this allows many actions to be done in sequence and the necessary final
bookkeeping to be done only after the last action.

For writing, this control structure is called CvSeqWriter. The writer is initialized with the
function cvStartWriteSeq() and is “closed” with cvEndwriteSeq(). While the sequence
writing is “open”, new elements can be added to the sequence with the macro CV_WRITE
SEQ(). Notice that the writing is done with a macro and not a function call, which saves
even the overhead of entering and exiting that code. Using the writer is faster than us-
ing cvSeqPush(); however, not all the sequence headers are updated immediately by this
macro, so the added element will be essentially invisible until you are done writing.
It will become visible when the structure is completely updated by cvEndWriteSeq().

* Effective with the beta 5 version of OpenCYV, this size is automatically increased if the sequence becomes
big; hence you'll not need to worry about it under normal circumstances.
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If necessary, the structure can be brought up-to-date (without actually closing the
writer) by calling cvFlushSegwriter().
void cvStartWriteSeq(

int seq flags,
int header size,
int elem size,

CvMemStorage* storage,
CvSeqWriter* writer
);
void cvStartAppendToSeq(
CvSeqg* seq,
CvSegWriter* writer

);
CvSeg* cvEndWriteSeq(

CvSegWriter* writer
).

)
void cvFlushSeqwriter(
CvSegWriter* writer

);

CV_WRITE_SEQ_ELEM( elem, writer )

CV_WRITE_SEQ_ELEM VAR( elem_ptr, writer )
The arguments to these functions are largely self-explanatory. The seq flags, header
size, and elem_size arguments to cvStartWriteSeq() are identical to the corresponding
arguments to cvCreateSeq(). The function cvStartAppendToSeq() initializes the writer to
begin adding new elements to the end of the existing sequence seq. The macro CV_WRITE_
SEQ_ELEM() requires the element to be written (e.g., a CvPoint) and a pointer to the writer;
a new element is added to the sequence and the element elem is copied into that new
element.

Putting these all together into a simple example, we will create a writer and append a
hundred random points drawn from a 320-by-240 rectangle to the new sequence.

CvSegWriter writer;
cvStartWriteSeq( CV_32SC2, sizeof(CvSeq), sizeof(CvPoint), storage, 8writer );
for( i = 0; i < 100; i++ )
{
CvPoint pt; pt.x = rand()%320; pt.y = rand()%240;
CV_WRITE_SEQ ELEM( pt, writer );

}
CvSeq* seq = cvEndWriteSeq( &writer );

For reading, there is a similar set of functions and a few more associated macros.

void cvStartReadSeq(
const CvSeq* seq,
CvSeqReader* reader,
int reverse =0

);

int  cvGetSeqReaderPos(
CvSeqReader* reader

);

void cvSetSeqReaderPos(
CvSeqReader* reader,
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int index,
int is relative = 0

)

CV_NEXT_SEQ_ELEM( elem_size, reader )

CV_PREV_SEQ_ELEM( elem_size, reader )

CV_READ_SEQ_ELEM( elem, reader )

CV_REV READ SEQ_ELEM( elem, reader )
The structure CvSeqReader, which is analogous to CvSeqWriter, is initialized with
the function cvStartReadSeq(). The argument reverse allows for the sequence to be
read either in “normal” order (reverse=0) or backwards (reverse=1). The function
cvGetSeqReaderPos() returns an integer indicating the current location of the reader in
the sequence. Finally, cvSetSeqReaderPos() allows the reader to “seek” to an arbitrary
location in the sequence. If the argument is_relative is nonzero, then the index will be
interpreted as a relative offset to the current reader position. In this case, the index may
be positive or negative.

The two macros CV_NEXT SEQ_ELEM() and CV_PREV_SEQ ELEM() simply move the reader for-
ward or backward one step in the sequence. They do no error checking and thus cannot
help you if you unintentionally step off the end of the sequence. The macros CV_READ
SEQ_ELEM() and CV_REV_READ SEQ ELEM() are used to read from the sequence. They will
both copy the “current” element at which the reader is pointed onto the variable elem
and then step the reader one step (forward or backward, respectively). These latter two
macros expect just the name of the variable to be copied to; the address of that variable
will be computed inside of the macro.

Sequences and Arrays

You may often find yourself wanting to convert a sequence, usually full of points, into
an array.

void* cvCvtSeqToArray(

const CvSeq* seq,

void* elements,

CvSlice slice = CV_WHOLE SEQ
);
CvSeq* cvMakeSeqHeaderForArray(

int seq_type,
int header size,
int elem size,
void* elements,
int total,
CvSeq* seq,

CvSegBlock*  block
);
The function cvCvtSeqToArray() copies the content of the sequence into a continuous
memory array. This means that if you have a sequence of 20 elements of type CvPoint
then the function will require a pointer, elements, to enough space for 40 integers. The
third (optional) argument is slice, which can be either an object of type CvSlice or the
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macro CV_WHOLE_SEQ (the latter is the default value). If CV_WHOLE SEQ is selected, then the
entire sequence is copied.

The opposite functionality to cvCvtSeqToArray() is implemented by cvMakeSeqHeaderFor
Array(). In this case, you can build a sequence from an existing array of data. The func-
tion’s first few arguments are identical to those of cvCreateSeq(). In addition to requiring
the data (elements) to copy in and the number (total) of data items, you must provide a
sequence header (seq) and a sequence memory block structure (block). Sequences created
in this way are not exactly the same as sequences created by other methods. In particular,
you will not be able to subsequently alter the data in the created sequence.

Contour Finding

We are finally ready to start talking about contours. To start with, we should define ex-
actly what a contour is. A contour is a list of points that represent, in one way or an-
other, a curve in an image. This representation can be different depending on the cir-
cumstance at hand. There are many ways to represent a curve. Contours are represented
in OpenCV by sequences in which every entry in the sequence encodes information
about the location of the next point on the curve. We will dig into the details of such
sequences in a moment, but for now just keep in mind that a contour is represented in
OpenCV by a CvSeq sequence that is, one way or another, a sequence of points.

The function cvFindContours() computes contours from binary images. It can take im-
ages created by cvCanny(), which have edge pixels in them, or images created by func-
tions like cvThreshold() or cvAdaptiveThreshold(), in which the edges are implicit as
boundaries between positive and negative regions.*

Before getting to the function prototype, it is worth taking a moment to understand ex-
actly what a contour is. Along the way, we will encounter the concept of a contour tree,
which is important for understanding how cvFindContours() (retrieval methods derive
from Suzuki [Suzuki85]) will communicate its results to us.

Take a moment to look at Figure 8-2, which depicts the functionality of cvFindContours().
The upper part of the figure shows a test image containing a number of white regions
(labeled A through E) on a dark background.” The lower portion of the figure depicts
the same image along with the contours that will be located by cvFindContours(). Those
contours are labeled cX or hX, where “c” stands for “contour”, “h” stands for “hole”, and
“X” is some number. Some of those contours are dashed lines; they represent exterior
boundaries of the white regions (i.e., nonzero regions). OpenCV and cvFindContours()
distinguish between these exterior boundaries and the dotted lines, which you may
think of either as interior boundaries or as the exterior boundaries of holes (i.e., zero

regions).

* There are some subtle differences between passing edge images and binary images to cvFindContours(); we
will discuss those shortly.

t For clarity, the dark areas are depicted as gray in the figure, so simply imagine that this image is thresh-
olded such that the gray areas are set to black before passing to cvFindContours().
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Figure 8-2. A test image (above) passed to cvFindContours() (below): the found contours may be
either of two types, exterior “contours” (dashed lines) or “holes” (dotted lines)

The concept of containment here is important in many applications. For this reason,
OpenCV can be asked to assemble the found contours into a contour tree* that encodes
the containment relationships in its structure. A contour tree corresponding to this test
image would have the contour called c0 at the root node, with the holes h00 and h01 as
its children. Those would in turn have as children the contours that they directly con-
tain, and so on.

A W

It is interesting to note the consequences of using cvFindContours() on

an image generated by cvCanny() or a similar edge detector relative to

%Li+ what happens with a binary image such as the test image shown in Fig-

* ure 8-1. Deep down, cvFindContours() does not really know anything
about edge images. This means that, to cvFindContours(), an “edge” is
just a very thin “white” area. As a result, for every exterior contour there
will be a hole contour that almost exactly coincides with it. This hole is
actually just inside of the exterior boundary. You can think of it as the
white-to-black transition that marks the interior edge of the edge.

* Contour trees first appeared in Reeb [Reeb46] and were further developed by [Bajaj97], [Kreveld97], [Pas-
cucci02], and [Carr04].
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Now it’s time to look at the cvFindContours() function itself: to clarify exactly how we
tell it what we want and how we interpret its response.

int cvFindContours(

IplImage* img,

CvMemStorage* storage,

CvSeqg** firstContour,

int headerSize = sizeof(CvContour),

CvContourRetrievalMode mode
CvChainApproxMethod method
);

The first argument is the input image; this image should be an 8-bit single-channel im-
age and will be interpreted as binary (i.e., as if all nonzero pixels are equivalent to one
another). When it runs, cvFindContours() will actually use this image as scratch space
for computation, so if you need that image for anything later you should make a copy
and pass that to cvFindContours(). The next argument, storage, indicates a place where
cvFindContours() can find memory in which to record the contours. This storage area
should have been allocated with cvCreateMemStorage(), which we covered earlier in
the chapter. Next is firstContour, which is a pointer to a CvSeq*. The function cvFind
Contours() will allocate this pointer for you, so you shouldn’t allocate it yourself. In-
stead, just pass in a pointer to that pointer so that it can be set by the function. No al-
location/de-allocation (new/delete or malloc/free) is needed. It is at this location (i.e.,
*firstContour) that you will find a pointer to the head of the constructed contour tree.*
The return value of cvFindContours() is the total number of contours found.

CvSeg* firstContour = NULL;
cvFindContours( .., 8firstContour, .. );

CV_RETR_LIST,
CV_CHAIN_APPROX_SIMPLE

The headerSize is just telling cvFindContours() more about the objects that it will be
allocating; it can be set to sizeof(CvContour) or to sizeof(CvChain) (the latter is used
when the approximation method is set to CV_CHAIN CODE).T Finally, we have the mode and
method, which (respectively) further clarify exactly what is to be computed and how it is
to be computed.

The mode variable can be set to any of four options: CV_RETR_EXTERNAL, CV_RETR_LIST, CV_
RETR_CCOMP, or CV_RETR_TREE. The value of mode indicates to cvFindContours() exactly what
contours we would like found and how we would like the result presented to us. In par-
ticular, the manner in which the tree node variables (h_prev, h next, v_prev, and v_next)
are used to “hook up” the found contours is determined by the value of mode. In Figure
8-3, the resulting topologies are shown for all four possible values of mode. In every case,
the structures can be thought of as “levels” which are related by the “horizontal” links
(h_next and h_prev), and those levels are separated from one another by the “vertical”
links (v_next and v_prev).

* As we will see momentarily, contour trees are just one way that cvFindContours() can organize the con-
tours it finds. In any case, they will be organized using the CV_TREE_NODE_FIELDS elements of the contours
that we introduced when we first started talking about sequences.

t In fact, headerSize can be an arbitrary number equal to or greater than the values listed.
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Figure 8-3. The way in which the tree node variables are used to “hook up” all of the contours located
by cvFindContours()

CV_RETR_EXTERNAL

Retrieves only the extreme outer contours. In Figure 8-2, there is only one exterior
contour, so Figure 8-3 indicates the first contour points to that outermost sequence
and that there are no further connections.

CV_RETR_LIST

Retrieves all the contours and puts them in the list. Figure 8-3 depicts the list re-
sulting from the test image in Figure 8-2. In this case, eight contours are found and
they are all connected to one another by h prev and h next (v_prev and v_next are
not used here.)

CV_RETR_CCOMP

Retrieves all the contours and organizes them into a two-level hierarchy, where the
top-level boundaries are external boundaries of the components and the second-
level boundaries are boundaries of the holes. Referring to Figure 8-3, we can see
that there are five exterior boundaries, of which three contain holes. The holes are
connected to their corresponding exterior boundaries by v_next and v_prev. The
outermost boundary c0 contains two holes. Because v_next can contain only one
value, the node can only have one child. All of the holes inside of c0 are connected
to one another by the h prev and h next pointers.

CV_RETR_TREE

Retrieves all the contours and reconstructs the full hierarchy of nested contours. In
our example (Figures 8-2 and 8-3), this means that the root node is the outermost
contour c0. Below c0 is the hole h00, which is connected to the other hole h01 at the
same level. Each of those holes in turn has children (the contours c000 and c010,
respectively), which are connected to their parents by vertical links. This continues
down to the most-interior contours in the image, which become the leaf nodes in
the tree.

The next five values pertain to the method (i.e., how the contours are approximated).
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CV_CHAIN_CODE
Outputs contours in the Freeman chain code;* all other methods output polygons
(sequences of vertices).T

CV_CHAIN_APPROX_NONE

Translates all the points from the chain code into points.

CV_CHAIN_APPROX_ SIMPLE

Compresses horizontal, vertical, and diagonal segments, leaving only their ending
points.

CV_CHAIN_APPROX_TC89 L1 or CV_CHAIN APPROX TC89 KCOS
Applies one of the flavors of the Teh-Chin chain approximation algorithm.

CV_LINK_RUNS

Completely different algorithm (from those listed above) that links horizontal seg-
ments of 1s; the only retrieval mode allowed by this method is Cv_RETR LIST.

Contours Are Sequences

As you can see, there is a lot to sequences and contours. The good news is that, for
our current purpose, we need only a small amount of what’s available. When
cvFindContours() is called, it will give us a bunch of sequences. These sequences are all
of one specific type; as we saw, which particular type depends on the arguments passed
to cvFindContours(). Recall that the default mode is CV_RETR_LIST and the default method
is CV_CHAIN_APPROX SIMPLE.

These sequences are sequences of points; more precisely, they are contours—the actual
topic of this chapter. The key thing to remember about contours is that they are just
a special case of sequences. In particular, they are sequences of points representing
some kind of curve in (image) space. Such a chain of points comes up often enough that
we might expect special functions to help us manipulate them. Here is a list of these
functions.

int cvFindContours(

CvATrT* image,

CvMemStorage* storage,

CvSeq** first contour,

int header size = sizeof(CvContour),

int mode = CV_RETR_LIST,

int method = CV_CHAIN_APPROX_ SIMPLE,

* Freeman chain codes will be discussed in the section entitled “Contours Are Sequences”.

t Here “vertices” means points of type CvPoint. The sequences created by cvFindContours() are the same
as those created with cvCreateSeq() with the flag CV_SEQ_ELTYPE_POINT. (That function and flag will be
described in detail later in this chapter.)

1 OK, there’s a little more to it than this, but we did not want to be sidetracked by technicalities and so will
clarify in this footnote. The type CvContour is not identical to CvSeq. In the way such things are handled in
OpenCV, CvContour is, in effect, derived from CvSeq. The CvContour type has a few extra data members,
including a color and a CvRect for stashing its bounding box.
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CvPoint offset = cvPoint(0,0)
);

CvContourScanner cvStartFindContours(

CvATT* image,

CvMemStorage* storage,

int header size = sizeof(CvContour),

int mode = CV RETR_LIST,

int method = CV_CHAIN_APPROX_SIMPLE,
CvPoint offset = cvPoint(0,0)

)

CvSeq* cvFindNextContour(
CvContourScanner scanner

).

)

void  cvSubstituteContour(
CvContourScanner scanner,
CvSeqg* new_contour

);

CvSeq* cvEndFindContour(
CvContourScanner* scanner

);

CvSeq* cvApproxChains(

CvSeqg* src_seq,

CvMemStorage* storage,

int method = CV_CHAIN APPROX_SIMPLE,
double parameter = 0,

int minimal_perimeter = 0,

int recursive =0

);

First is the cvFindContours() function, which we encountered earlier. The second func-
tion, cvStartFindContours(), is closely related to cvFindContours() except that it is used
when you want the contours one at a time rather than all packed up into a higher-level
structure (in the manner of cvFindContours()). A call to cvStartFindContours() returns a
CvSequenceScanner. The scanner contains some simple state information about what has
and what has not been read out.* You can then call cvFindNextContour() on the scanner
to successively retrieve all of the contours found. A NULL return means that no more
contours are left.

cvSubstituteContour() allows the contour to which a scanner is currently pointing to
be replaced by some other contour. A useful characteristic of this function is that, if
the new_contour argument is set to NULL, then the current contour will be deleted from
the chain or tree to which the scanner is pointing (and the appropriate updates will be
made to the internals of the affected sequence, so there will be no pointers to nonexis-
tent objects).

Finally, cvEndFindContour() ends the scanning and sets the scanner to a “done” state.
Note that the sequence the scanner was scanning is not deleted; in fact, the return value
of cvEndFindContour() is a pointer to the first element in the sequence.

* It is important not to confuse a CvSequenceScanner with the similarly named CvSeqReader. The latter is
for reading the elements in a sequence, whereas the former is used to read from what is, in effect, a list of
sequences.
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The final function is cvApproxChains(). This function converts Freeman chains to po-
lygonal representations (precisely or with some approximation). We will discuss cvAp-
proxPoly() in detail later in this chapter (see the section “Polygon Approximations”).

Freeman Chain Codes

Normally, the contours created by cvFindContours() are sequences of vertices (i.e.,
points). An alternative representation can be generated by setting the method to
CV_CHAIN_CODE. In this case, the resulting contours are stored internally as Freeman chains
[Freeman67] (Figure 8-4). With a Freeman chain, a polygon is represented as a sequence
of steps in one of eight directions; each step is designated by an integer from 0 to 7. Free-
man chains have useful applications in recognition and other contexts. When working
with Freeman chains, you can read out their contents via two “helper” functions:

void cvStartReadChainPoints(
CvChain* chain,
CvChainPtReader* reader

)

CvPoint cvReadChainPoint(
CvChainPtReader* reader

)

l

5 4 3 0-1-1-2-2-4-3-2-3-5-6-6-6-6-7

(a) (b)

Figure 8-4. Panel a, Freeman chain moves are numbered 0-7; panel b, contour converted to a Free-
man chain-code representation starting from the back bumper

The first function takes a chain as its argument and the second function is a chain reader.
The CvChain structure is a form of CvSeq.* Just as CvContourScanner iterates through dif-
ferent contours, CvChainPtReader iterates through a single contour represented by a
chain. In this respect, CvChainPtReader is similar to the more general CvSeqReader, and

* You may recall a previous mention of “extensions” of the CvSeq structure; CvChain is such an extension. It is
defined using the CV_SEQUENCE_FIELDS() macro and has one extra element in it, a CvPoint representing the
origin. You can think of CvChain as being “derived from” CvSeq. In this sense, even though the return type
of cvApproxChains() is indicated as CvSeq*, it is really a pointer to a chain and is not a normal sequence.
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cvStartReadChainPoints plays the role of cvStartReadSeq. As you might expect, CvChain-
PtReader returns NULL when there’s nothing left to read.

Drawing Contours

One of our most basic tasks is drawing a contour on the screen. For this we have
cvDrawContours():

void cvDrawContours(
CvArr*  img,
CvSeq*  contour,
CvScalar external color,
CvScalar hole color,

int max_level,

int thickness =1,

int line type =8,

CvPoint offset = cvPoint(0,0)

);

The first argument is simple: it is the image on which to draw the contours. The next ar-
gument, contour, is not quite as simple as it looks. In particular, it is really treated as the
root node of a contour tree. Other arguments (primarily max_level) will determine what
is to be done with the rest of the tree. The next argument is pretty straightforward: the
color with which to draw the contour. But what about hole color? Recall that OpenCV
distinguishes between contours that are exterior contours and those that are hole con-
tours (the dashed and dotted lines, respectively, in Figure 8-2). When drawing either a
single contour or all contours in a tree, any contour that is marked as a “hole” will be
drawn in this alternative color.

The max_level tells cvDrawContours() how to handle any contours that might be at-
tached to contour by means of the node tree variables. This argument can be set to in-
dicate the maximum depth to traverse in the drawing. Thus, max_level=0 means that all
the contours on the same level as the input level (more exactly, the input contour and
the contours next to it) are drawn, max_level=1 means that all the contours on the same
level as the input and their children are drawn, and so forth. If the contours in ques-
tion were produced by cvFindContours() using either CV_RETR CCOMP or CV _RETR TREE
mode, then the additional idiom of negative values for max_level is also supported. In
this case, max_level=-1 is interpreted to mean that only the input contour will be drawn,
max_level=-2 means that the input contour and its direct children will the drawn, and so
on. The sample code in .../opencv/samples/c/contours.c illustrates this point.

The parameters thickness and line type have their usual meanings.* Finally, we can
give an offset to the draw routine so that the contour will be drawn elsewhere than at
the absolute coordinates by which it was defined. This feature is particularly useful when
the contour has already been converted to center-of-mass or other local coordinates.

* In particular, thickness=-1 (aka CV_FILLED) is useful for converting the contour tree (or an individual
contour) back to the black-and-white image from which it was extracted. This feature, together with the
offset parameter, can be used to do some quite complex things with contours: intersect and merge con-
tours, test points quickly against the contours, perform morphological operations (erode/dilate), etc.
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More specifically, offset would be helpful if we ran cvFindContours() one or more times
in different image subregions (ROIs) and thereafter wanted to display all the results
within the original large image. Conversely, we could use offset if we’d extracted a con-
tour from a large image and then wanted to form a small mask for this contour.

A Contour Example

Our Example 8-2 is drawn from the OpenCV package. Here we create a window with an
image in it. A trackbar sets a simple threshold, and the contours in the thresholded im-
age are drawn. The image is updated whenever the trackbar is adjusted.

Example 8-2. Finding contours based on a trackbar’s location; the contours are updated whenever
the trackbar is moved

#include <cv.h>
#include <highgui.h>

IplImage* g image = NULL;
IplImage* g_gray = NULL;
int g thresh = 100;

CvMemStorage* g storage = NULL;

void on_trackbar(int) {
if( g_storage==NULL ) {
g_gray = cvCreateImage( cvGetSize(g_image), 8, 1 );
g _storage = cvCreateMemStorage(0);
} else {
cvClearMemStorage( g_storage );
}
CvSeg* contours = 0;
cvCvtColor( g_image, g_gray, CV_BGR2GRAY );
cvThreshold( g gray, g gray, g thresh, 255, CV THRESH BINARY );
cvFindContours( g gray, g storage, &contours );
cvZero( g_gray );
if( contours )
cvDrawContours(
g_gray,
contours,
cvScalarAl1(255),
cvScalarAll1(255),
100
);
cvShowImage( “Contours”, g_gray );

}

int main( int argc, char** argv )
{
if( argc != 2 || !(g_image = cvLoadImage(argv[1])) )
return -1;
cvNamedWindow( “Contours”, 1 );
cvCreateTrackbar(
“Threshold”,
“Contours”,
&g thresh,
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Example 8-2. Finding contours based on a trackbar’s location; the contours are updated whenever
the trackbar is moved (continued)

255,

on_trackbar
);
on_trackbar(0);
cvhaitKey();
return 0;

}

Here, everything of interest to us is happening inside of the function on_trackbar(). If
the global variable g_storage is still at its (NULL) initial value, then cvCreateMemStorage(0)
creates the memory storage and g_gray is initialized to a blank image the same size
as g_image but with only a single channel. If g storage is non-NULL, then we’ve been
here before and thus need only empty the storage so it can be reused. On the next line,
a (vSeg* pointer is created; it is used to point to the sequence that we will create via
cvFindContours().

Next, the image g_image is converted to grayscale and thresholded such that only those
pixels brighter than g thresh are retained as nonzero. The cvFindContours() function
is then called on this thresholded image. If any contours were found (i.e., if contours is
non-NULL), then cvDrawContours() is called and the contours are drawn (in white) onto
the grayscale image. Finally, that image is displayed and the structures we allocated at
the beginning of the callback are released.

Another Contour Example

In this example, we find contours on an input image and then proceed to draw them
one by one. This is a good example to play with yourself and see what effects result from
changing either the contour finding mode (CV_RETR_LIST in the code) or the max_depth
that is used to draw the contours (0 in the code). If you set max_depth to a larger number,
notice that the example code steps through the contours returned by cvFindContours()
by means of h next. Thus, for some topologies (CV_RETR_TREE, CV_RETR_CCOMP, etc.), you
may see the same contour more than once as you step through. See Example 8-3.

Example 8-3. Finding and drawing contours on an input image

int main(int argc, char* argv[]) {
cvNamedWindow( argv[o], 1 );
IplImage* img 8ucl = cvlLoadImage( argv[1], CV_LOAD IMAGE GRAYSCALE );
IplImage* img edge = cvCreateImage( cvGetSize(img 8uci), 8, 1 );
IplImage* img 8uc3 = cvCreateImage( cvGetSize(img 8ucl), 8, 3 );

cvThreshold( img 8ucl, img edge, 128, 255, CV THRESH BINARY );

CvMemStorage* storage = cvCreateMemStorage();
CvSeg* first contour = NULL;
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Example 8-3. Finding and drawing contours on an input image (continued)

int Nc = cvFindContours(
img edge,
storage,
&first contour,
sizeof(CvContour),
CV_RETR_LIST // Try all four values and see what happens

)

int n=0;
printf( “Total Contours Detected: %d\n”, Nc );
for( CvSeg* c=first contour; c!=NULL; c=c->h next ) {
cvCvtColor( img 8uc1, img 8uc3, CV_GRAY2BCR );
cvDrawContours(
img 8uc3,
G
CVX_RED,
CVX_BLUE,
0, // Try different values of max_level, and see what happens
2,
8
);
printf(“Contour #%d\n”, n );
cvShowImage( argv[0], img 8uc3 );
printf(“ %d elements:\n”, c->total );
for( int i=0; i<c->total; ++i ) {
CvPoint* p = CV_GET SEQ ELEM( CvPoint, ¢, i );
printf(“ (%d,%d)\n”, p->x, p->y );

cviaitKey(0);
n++;

}

printf(“Finished all contours.\n”);
cvCvtColor( img 8ucl, img 8uc3, CV_GRAY2BCR );
cvShowImage( argv[o], img 8uc3 );
cviaitKey(0);

cvDestroyWindow( argv[o] );
cvReleaseImage( &img 8ucl );
cvReleaseImage( &img_8uc3 );

cvReleaseImage( &img_edge );

return 0;

More to Do with Contours

When analyzing an image, there are many different things we might want to do with
contours. After all, most contours are—or are candidates to be—things that we are inter-
ested in identifying or manipulating. The various relevant tasks include characterizing
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the contours in various ways, simplifying or approximating them, matching them to
templates, and so on.

In this section we will examine some of these common tasks and visit the various func-
tions built into OpenCV that will either do these things for us or at least make it easier
for us to perform our own tasks.

Polygon Approximations

If we are drawing a contour or are engaged in shape analysis, it is common to approxi-
mate a contour representing a polygon with another contour having fewer vertices.
There are many different ways to do this; OpenCV offers an implementation of one of
them.* The routine cvApproxPoly() is an implementation of this algorithm that will act
on a sequence of contours:

CvSeq* cvApproxPoly(
const void*  src_seq,

int header size,
CvMemStorage* storage,

int method,
double parameter,

int recursive =0

);
We can pass a list or a tree sequence containing contours to cvApproxPoly(), which will
then act on all of the contained contours. The return value of cvApproxPoly() is actually
just the first contour, but you can move to the others by using the h next (and v_next, as
appropriate) elements of the returned sequence.

Because cvApproxPoly() needs to create the objects that it will return a pointer to,
it requires the usual CvMemStorage* pointer and header size (which, as usual, is set to
sizeof(CvContour)).

The method argument is always set to CV_POLY APPROX DP (though other algorithms could
be selected if they become available). The next two arguments are specific to the method
(of which, for now, there is but one). The parameter argument is the precision parameter
for the algorithm. To understand how this parameter works, we must take a moment to
review the actual algorithm.T The last argument indicates whether the algorithm should
(as mentioned previously) be applied to every contour that can be reached via the h next
and v_next pointers. If this argument is 0, then only the contour directly pointed to by
src_seq will be approximated.

So here is the promised explanation of how the algorithm works. In Figure 8-5, start-
ing with a contour (panel b), the algorithm begins by picking two extremal points and
connecting them with a line (panel c). Then the original polygon is searched to find the
point farthest from the line just drawn, and that point is added to the approximation.

* For aficionados, the method used by OpenCV is the Douglas-Peucker (DP) approximation [Douglas73].
Other popular methods are the Rosenfeld-Johnson [Rosenfeld73] and Teh-Chin [Teh89] algorithms.

t If that’s too much trouble, then just set this parameter to a small fraction of the total curve length.
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The process is iterated (panel d), adding the next most distant point to the accumulated
approximation, until all of the points are less than the distance indicated by the precision
parameter (panel f). This means that good candidates for the parameter are some frac-
tion of the contour’s length, or of the length of its bounding box, or a similar measure of
the contour’s overall size.

Figure 8-5. Visualization of the DP algorithm used by cvApproxPoly(): the original image (a) is ap-
proximated by a contour (b) and then, starting from the first two maximally separated vertices (c),
the additional vertices are iteratively selected from that contour (d)-(f)

Closely related to the approximation just described is the process of finding dominant
points. A dominant point is defined as a point that has more information about the curve
than do other points. Dominant points are used in many of the same contexts as poly-
gon approximations. The routine cvFindDominantPoints() implements what is known as
the IPAN* [Chetverikov99] algorithm.

CvSeq* cvFindDominantPoints(

CvSeqg* contour,

CvMemStorage* storage,

int method = CV_DOMINANT_IPAN,
double parameterl = 0,

double parameter2 = 0,

double parameter3 = 0,

double parameter4 = 0

);
In essence, the IPAN algorithm works by scanning along the contour and trying to
construct triangles on the interior of the curve using the available vertices. That tri-
angle is characterized by its size and the opening angle (see Figure 8-6). The points with
large opening angles are retained provided that their angles are smaller than a specified
global threshold and smaller than their neighbors.

* For “Image and Pattern Analysis Group,” Hungarian Academy of Sciences. The algorithm is often referred
to as “IPAN99” because it was first published in 1999.
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Figure 8-6. The IPAN algorithm uses triangle abp to characterize point p

The routine cvFindDominantPoints() takes the usual CvSeq* and CvMemStorage* argu-
ments. It also requires a method, which (as with cvApproxPoly()) can take only one argu-
ment at this time: CV_DOMINANT IPAN.

The next four arguments are: a minimal distance d,,;,, a maximal distance d,,,, a neigh-
borhood distance d,, and a maximum angle 0, ,,. As shown in Figure 8-6, the algorithm
first constructs all triangles for which r,, and r,, fall between d,,;, and d,,,,, and for which
0, < Opnax- This is followed by a second pass in which only those points p with the small-
est associated value of 0,, in the neighborhood d,, are retained (the value of d, should
never exceed d,,,,). Typical values for d,;,, de0 4, and 0, are 7,9, 9, and 150 (the last
argument is an angle and is measured in degrees).

max

Summary Characteristics

Another task that one often faces with contours is computing their various summary
characteristics. These might include length or some other form of size measure of the
overall contour. Other useful characteristics are the contour moments, which can be
used to summarize the gross shape characteristics of a contour (we will address these in
the next section).

Length
The subroutine cvContourPerimeter() will take a contour and return its length. In fact,
this function is actually a macro for the somewhat more general cvArcLength().

double cvArclLength(
const void* curve,

CvSlice slice = CV_WHOLE_SEQ,
int is closed = -1
);
#tdefine cvContourPerimeter( contour ) \

cvArcLength( contour, CV_WHOLE_SEQ, 1 )

The first argument of cvArclength() is the contour itself, whose form may be either a
sequence of points (CvContour* or CvSeq*) or an n-by-2 array of points. Next are the slice
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argument and a Boolean indicating whether the contour should be treated as closed
(i.e., whether the last point should be treated as connected to the first). The slice argu-
ment allows us to select only some subset of the points in the curve.*

Closely related to cvArcLegth() is cvContourArea(), which (as its name suggests) com-
putes the area of a contour. It takes the contour as an argument and the same slice argu-
ment as cvArcLength().

double cvContourArea(

const CvArr* contour,
CvSlice slice = CV_WHOLE_SEQ

)

Bounding boxes

Of course the length and area are simple characterizations of a contour. The next level of
detail might be to summarize them with a bounding box or bounding circle or ellipse.
There are two ways to do the former, and there is a single method for doing each of the
latter.

CvRect cvBoundingRect(

CvArr* points,
int update =0
()I:/BoxzD cvMinAreaRect2(
const CvArr* points,
CvMemStorage* storage = NULL

);
The simplest technique is to call cvBoundingRect(); it will return a CvRect that bounds
the contour. The points used for the first argument can be either a contour (CvContour*)
or an n-by-1, two-channel matrix (CvMat*) containing the points in the sequence. To un-
derstand the second argument, update, we must harken back to footnote 8. Remember
that CvContour is not exactly the same as CvSeg; it does everything CvSeq does but also a
little bit more. One of those CvContour extras is a CvRect member for referring to its own
bounding box. If you call cvBoundingRect() with update set to 0 then you will just get the
contents of that data member; but if you call with update set to 1, the bounding box will
be computed (and the associated data member will also be updated).

One problem with the bounding rectangle from cvBoundingRect() is that it is a CvRect
and so can only represent a rectangle whose sides are oriented horizontally and verti-
cally. In contrast, the routine cvMinAreaRect2() returns the minimal rectangle that will
bound your contour, and this rectangle may be inclined relative to the vertical; see Fig-
ure 8-7. The arguments are otherwise similar to cvBoundingRect(). The OpenCV data
type CvBox2D is just what is needed to represent such a rectangle.

* Almost always, the default value CV_WHOLE_SEQ is used. The structure CvSlice contains only two elements:
start_index and end index. You can create your own slice to put here using the helper constructor func-
tion cvSlice( int start, int end ).Note that CV_WHOLE_SEQ is just shorthand for a slice starting at 0
and ending at some very large number.
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typedef struct CvBox2D {
CvPoint2D32f center;
CvSize2D32f size;

float angle;
} CvBox2D;
height 1
— o
(x,y) width angle
(center.x,l center.y)
size.height [
Size.width
(a) CvRect (b) CvBox2D

Figure 8-7. CvRect can represent only upright rectangles, but CvBox2D can handle rectangles of any
inclination

Enclosing circles and ellipses

Next we have cvMinEnclosingCircle().* This routine works pretty much the same as the
bounding box routines, with the same flexibility of being able to set points to be either a
sequence or an array of two-dimensional points.

int cvMinEnclosingCircle(
const CvArr* points,
CvPoint2D32f* center,
float* radius

);
There is no special structure in OpenCV for representing circles, so we need to pass
in pointers for a center point and a floating-point variable radius that can be used by
cvMinEnclosingCircle() to report the results of its computations.

As with the minimal enclosing circle, OpenCV also provides a method for fitting an el-
lipse to a set of points:

CvBox2D cvFitEllipse2(
const CvArr* points

)

* For more information on the inner workings of these fitting techniques, see Fitzgibbon and Fisher [Fitzgib-
bon95] and Zhang [Zhang96].
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The subtle difference between cvMinEnclosingCircle() and cvFitEllipse2() is that the
former simply computes the smallest circle that completely encloses the given contour,
whereas the latter uses a fitting function and returns the ellipse that is the best approxi-
mation to the contour. This means that not all points in the contour will be enclosed in
the ellipse returned by cvFitEllipse2(). The fitting is done using a least-squares fitness
function.

The results of the fit are returned in a CvBox2D structure. The indicated box exactly en-
closes the ellipse. See Figure 8-8.

(a) (b) (c)

Figure 8-8. Ten-point contour with the minimal enclosing circle superimposed (a) and with the best-
fitting ellipsoid (b); a box (c) is used by OpenCV to represent that ellipsoid

Geometry

When dealing with bounding boxes and other summary representations of polygon
contours, it is often desirable to perform such simple geometrical checks as polygon
overlap or a fast overlap check between bounding boxes. OpenCV provides a small but
handy set of routines for this sort of geometrical checking.

CvRect cvMaxRect(

const CvRect* recti,
const CvRect* rect2

);

void cvBoxPoints(

CvBox2D box,
CvPoint2D32f pt[4]

);

CvSeq* cvPointSeqFromMat(
int seq_kind,
const CvArr* mat,
CvContour* contour_header,
CvSeqBlock*  block

);

double cvPointPolygonTest(
const CvArr* contour,
CvPoint2D32f pt,
int measure dist

)
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The first of these functions, cvMaxRect(), computes a new rectangle from two input rect-
angles. The new rectangle is the smallest rectangle that will bound both inputs.

Next, the utility function cvBoxPoints() simply computes the points at the corners of a
CvBox2D structure. You could do this yourself with a bit of trigonometry, but you would
soon grow tired of that. This function does this simple pencil pushing for you.

The second utility function, cvPointSeqFromMat(), generates a sequence structure from a
matrix. This is useful when you want to use a contour function that does not also take
matrix arguments. The input to cvPointSegFromMat() first requires you to indicate what
sort of sequence you would like. The variable seq_kind may be set to any of the follow-
ing: zero (0), indicating just a point set; CV_SEQ_KIND_CURVE, indicating that the sequence
is a curve; or CV_SEQ KIND CURVE | CV_SEQ FLAG CLOSED, indicating that the sequence is
a closed curve. Next you pass in the array of points, which should be an n-by-1 array
of points. The points should be of type CV_325C2 or CV_32FC2 (i.e., they should be single-
column, two-channel arrays). The next two arguments are pointers to values that will be
computed by cvPointSeqFromMat(), and contour header is a contour structure that you
should already have created but whose internals will be filled by the function call. This
is similarly the case for block, which will also be filled for you.* Finally the return value
is a CvSeq* pointer, which actually points to the very contour structure you passed in
yourself. This is a convenience, because you will generally need the sequence address
when calling the sequence-oriented functions that motivated you to perform this con-
version in the first place.

The last geometrical tool-kit function to be presented here is cvPointPolygonTest(), a
function that allows you to test whether a point is inside a polygon (indicated by a se-
quence). In particular, if the argument measure dist is nonzero then the function re-
turns the distance to the nearest contour edge; that distance is 0 if the point is inside the
contour and positive if the point is outside. If the measure dist argument is 0 then the
return values are simply + 1, — 1, or 0 depending on whether the point is inside, outside,
or on an edge (or vertex), respectively. The contour itself can be either a sequence or an
n-by-1 two-channel matrix of points.

Matching Contours

Now that we have a pretty good idea of what a contour is and of how to work with con-
tours as objects in OpenCV, we would like to take a moment to understand how to use
them for some practical purposes. The most common task associated with contours is
matching them in some way with one another. We may have two computed contours
that we’d like to compare or a computed contour and some abstract template with which
we’d like to compare our contour. We will discuss both of these cases.

* You will probably never use block. It exists because no actual memory is copied when you call cvPoint
SeqFromMat(); instead, a “virtual” memory block is created that actually points to the matrix you yourself
provided. The variable block is used to create a reference to that memory of the kind expected by internal
sequence or contour calculations.
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Moments

One of the simplest ways to compare two contours is to compute contour moments. This
is a good time for a short digression into precisely what a moment is. Loosely speaking,
a moment is a gross characteristic of the contour computed by integrating (or summing,
if you like) over all of the pixels of the contour. In general, we define the (p, q) moment
of a contour as

m, = ZI(x,y)xpyq
i=1

Here p is the x-order and q is the y-order, whereby order means the power to which the
corresponding component is taken in the sum just displayed. The summation is over
all of the pixels of the contour boundary (denoted by # in the equation). It then follows
immediately that if p and q are both equal to 0, then the m,, moment is actually just the
length in pixels of the contour.*

The function that computes these moments for us is

void cvContoursMoments(
CvSeg* contour,
CvMoments* moments

)
The first argument is the contour we are interested in and the second is a pointer to a
structure that we must allocate to hold the return data. The CvMoments structure is de-
fined as follows:

typedef struct CvMoments {

// spatial moments
double moo, m10, mo1, m20, mi1, m02, m30, m21, m12, mO3;

// central moments
double mu20, muil, mu02, mu30, mu2l, mul2, muo3;

// moo != 0 ? 1/sqrt(moo) : 0
double inv_sqrt moo;

} CvMoments;

The cvContoursMoments() function uses only the moo, mo1, . . ., m03 elements; the elements
with names mu0o, . . . are used by other routines.

When working with the CvMoments structure, there is a friendly helper function that
will return any particular moment out of the structure:

* Mathematical purists might object that m, should be not the contour’s length but rather its area. But be-
cause we are looking here at a contour and not a filled polygon, the length and the area are actually the same
in a discrete pixel space (at least for the relevant distance measure in our pixel space). There are also func-
tions for computing moments of IplImage images; in that case, m,, would actually be the area of nonzero
pixels.
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double cvGetSpatialMoment(
CvMoments* moments,

Int x_order,

int y_order

);
A single call to cvContoursMoments() will instigate computation of all the moments
through third order (i.e., m,, and m; will be computed, as will m,, and m,,, but m,, will
not be).

More About Moments

The moment computation just described gives some rudimentary characteristics of a
contour that can be used to compare two contours. However, the moments resulting
from that computation are not the best parameters for such comparisons in most practi-
cal cases. In particular, one would often like to use normalized moments (so that objects
of the same shape but dissimilar sizes give similar values). Similarly, the simple mo-
ments of the previous section depend on the coordinate system chosen, which means
that objects are not matched correctly if they are rotated.

OpenCV provides routines to compute normalized moments as well as Hu invariant
moments [Hu62]. The CvMoments structure can be computed either with cvMoments or
with cvContourMoments. Moreover, cvContourMoments is now just an alias for cvMoments.

A useful trick is to use cvDrawContours() to “paint” an image of the contour and then
call one of the moment functions on the resulting drawing. This allows you to control
whether or not the contour is filled.

Here are the four functions at your disposal:

void cvMoments(
const CvArr* image,
CvMoments*  moments,
int isBinary = 0

)

double cvGetCentralMoment(
CvMoments* moments,
int x_order,
int y_order

)

double cvGetNormalizedCentralMoment(
CvMoments*  moments,
int x_order,
int y_order

);

void cvGetHuMoments(
CvMoments*  moments,
CvHuMoments* HuMoments

);

The first function is essentially analogous to cvContoursMoments() except that it takes
an image (instead of a contour) and has one extra argument. That extra argument, if set

to CV_TRUE, tells cvMoments() to treat all pixels as either 1 or 0, where 1 is assigned to any
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pixel with a nonzero value. When this function is called, all of the moments—including
the central moments (see next paragraph)—are computed at once.

A central moment is basically the same as the moments just described except that the
values of x and y used in the formulas are displaced by the mean values:

u,,= ;ux, Nx=x, ) (=)

wherex, =m, /mg andy, =m/m

The normalized moments are the same as the central moments except that they are all
divided by an appropriate power of #m1,:*

Hyq

(p+q)/2+1
mOO

Mg =

Finally, the Hu invariant moments are linear combinations of the central moments. The
idea here is that, by combining the different normalized central moments, it is possible
to create invariant functions representing different aspects of the image in a way that is
invariant to scale, rotation, and (for all but the one called h,) reflection.

The cvGetHuMoments() function computes the Hu moments from the central moments.
For the sake of completeness, we show here the actual definitions of the Hu moments:

h =n,+n,
h, =1, =1, +41n;,
h,=(n,, —3n,) +Gn, -n,,)’
h, =, +n,)" +(n, +n,)’
hy = (1, —31,)(1,, +1,)((0, +1,,)* =3(n,, +1,,)°)
+(31,, = 1,,)(M,, +1,,)(3(10,, +1,)" =(1,, +1,,)*)
hy = (1, =N, (M, +1,)" = (M, +1,,)") +41, (M, +1,)(1,, +1,,)
h, =(3n,, —n,,)(n,, +1,,)3(n,, +1,)* = (1, +1,,)*)
— (M, =31,)(1M,, +1,,)3(n,, +1,)" = (10, +1,,)°)

Looking at Figure 8-9 and Table 8-1, we can gain a sense of how the Hu moments be-
have. Observe first that the moments tend to be smaller as we move to higher orders.
This should be no surprise in that, by their definition, higher Hu moments have more

* Here, “appropriate” means that the moment is scaled by some power of m1,, such that the resulting normal-
ized moment is independent of the overall scale of the object. In the same sense that an average is the sum of
N numbers divided by N, the higher-order moments also require a corresponding normalization factor.
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powers of various normalized factors. Since each of those factors is less than 1, the prod-
ucts of more and more of them will tend to be smaller numbers.

All|OIMF

Figure 8-9. Images of five simple characters; looking at their Hu moments yields some intuition
concerning their behavior

Table 8-1. Values of the Hu moments for the five simple characters of Figure 8-9

h, h, h, h, h; hg h,
A 2.837e—1 1.961e-3 1484e—-2 | 2.265e—4 —4.152e~7 1.003e—5 —~7.941e-9
| 4.578e~1 1.820e—1 0.000 0.000 0.000 0.000 0.000
0 3.791e-1 2.623e—4 4.501e—7 5.858e—7 1.529e-13 7.775e-9 —=2.591e-13

M 2.465e—1 4.775e—4 7.263e—5 2.617e—6 —3.607e—11 | —5718e—8 | —7.218e—24

F 3.186e—1 2.914e-2 9.397e-3 8.221e—4 3.872e-8 2.019e—5 2.285e—6

Other factors of particular interest are that the “I”, which is symmetric under 180 de-
gree rotations and reflection, has a value of exactly 0 for h; through h,; and that the
“O”, which has similar symmetries, has all nonzero moments. We leave it to the reader
to look at the figures, compare the various moments, and so build a basic intuition for
what those moments represent.

Matching with Hu Moments

double cvMatchShapes(
const void* objecti,
const void* object2,
int method,
double parameter =0

);
Naturally, with Hu moments we’d like to compare two objects and determine whether
they are similar. Of course, there are many possible definitions of “similar”. To make
this process somewhat easier, the OpenCV function cvMatchShapes() allows us to simply
provide two objects and have their moments computed and compared according to a
criterion that we provide.

These objects can be either grayscale images or contours. If you provide images,
cvMatchShapes() will compute the moments for you before proceeding with the com-
parison. The method used in cvMatchShapes() is one of the three listed in Table 8-2.
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Table 8-2. Matching methods used by cvMatchShapes()

Value of method cvMatchShapes() return value

2|1 1
CV_CONTOURS_MATCH_I1 LAB=Y | ———

= i

7
(V_CONTOURS_MATCH_12 L(AB)=YIm'—m

i=1

7 \m*—m®
CV_CONTOURS_MATCH_I3 L(AB)=Y v

i=1 i

In the table, m,A and mlB are defined as:
m”* =sign(h’) -log|hiA|
m; = sign(hB)-log|hiB|

i

where i and h” are the Hu moments of A and B, respectively.

Each of the three defined constants in Table 8-2 has a different meaning in terms of
how the comparison metric is computed. This metric determines the value ultimately
returned by cvMatchShapes(). The final parameter argument is not currently used, so we
can safely leave it at the default value of 0.

Hierarchical Matching

We’d often like to match two contours and come up with a similarity measure that takes
into account the entire structure of the contours being matched. Methods using sum-
mary parameters (such as moments) are fairly quick, but there is only so much informa-
tion they can capture.

For a more accurate measure of similarity, it will be useful first to consider a structure
known as a contour tree. Contour trees should not be confused with the hierarchical
representations of contours that are returned by such functions as cvFindContours(). In-
stead, they are hierarchical representations of the shape of one particular contour.

Understanding a contour tree will be easier if we first understand how it is constructed.
Constructing a contour tree from a contour works from bottom (leaf nodes) to top (the
root node). The process begins by searching the perimeter of the shape for triangular
protrusions or indentations (every point on the contour that is not exactly collinear
with its neighbors). Each such triangle is replaced with the line connecting its two
nonadjacent points on the curve;thus, in effect the triangle is either cut off (e.g., triangle
D in Figure 8-10), or filled in (triangle C). Each such alteration reduces the contour’s
number of vertices by 1 and creates a new node in the tree. If such a triangle has origi-
nal edges on two of its sides, then it is a leaf in the resulting tree; if one of its sides is
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part of an existing triangle, then it is a parent of that triangle. Iteration of this process
ultimately reduces the shape to a quadrangle, which is then cut in half; both resulting
triangles are children of the root node.

Figure 8-10. Constructing a contour tree: in the first round, the contour around the car produces leaf
nodes A, B, C, and D; in the second round, X and Y are produced (X is the parent of A and B, and Y
is the parent of C and D)

The resulting binary tree (Figure 8-11) ultimately encodes the shape information about
the original contour. Each node is annotated with information about the triangle to
which it is associated (information such as the size of the triangle and whether it was
created by cutting off or filling in).

Once these trees are constructed, they can be used to effectively compare two contours.*
This process begins by attempting to define correspondences between nodes in the two
trees and then comparing the characteristics of the corresponding nodes. The end result
is a similarity measure between the two trees.

In practice, we need to understand very little about this process. OpenCV provides us
with routines to generate contour trees automatically from normal CvContour objects
and to convert them back; it also provides the method for comparing the two trees. Un-
fortunately, the constructed trees are not quite robust (i.e., minor changes in the contour
may change the resultant tree significantly). Also, the initial triangle (root of the tree)
is chosen somewhat arbitrarily. Thus, to obtain a better representation requires that we
first apply cvApproxPoly() and then align the contour (perform a cyclic shift) such that
the initial triangle is pretty much rotation-independent.
CvContourTree* cvCreateContourTree(
const CvSeg* contour,

CvMemStorage* storage,
double threshold

* Some early work in hierarchical matching of contours is described in [Mokhtarian86] and [Neveu86] and to
3D in [Mokhtarian88].
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Figure 8-11. A binary tree representation that might correspond to a contour like that of Figure 8-10

);

CvSeg* cvContourFromContourTree(
const CvContourTree* tree,
CvMemStorage* storage,
CvTermCriteria criteria

)

double cvMatchContourTrees(
const CvContourTree* treei,
const CvContourTree* tree2,
int method,
double threshold

);
This code references CvTermCriteria(), the details of which are given in Chapter 9. For
now, you can simply construct a structure using cvlermCriteria() with the following (or
similar) defaults:

CvTermCriteria termcrit = cvlermCriteria(
CV_TERMCRIT ITER | CV_TERMCRIT EPS, 5, 1)

);

Contour Convexity and Convexity Defects

Another useful way of comprehending the shape of an object or contour is to compute
a convex hull for the object and then compute its convexity defects [Homma85]. The
shapes of many complex objects are well characterized by such defects.

Figure 8-12 illustrates the concept of a convexity defect using an image of a human
hand. The convex hull is pictured as a dark line around the hand, and the regions la-
beled A through H are each “defects” relative to that hull. As you can see, these convex-
ity defects offer a means of characterizing not only the hand itself but also the state of
the hand.
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#define CV_CLOCKWISE
#define CV_COUNTER CLOCKWISE 2
CvSeq* cvConvexHull2(
const CvArr* input,
void* hull storage NULL,
int orientation = CV_CLOCKWISE,
int return_points = 0
)i
int cvCheckContourConvexity(
const CvArr* contour
)i

CvSeq* cvConvexityDefects(
const CvArr* contour,
const CvArr* convexhull,
CvMemStorage* storage = NULL

)

Figure 8-12. Convexity defects: the dark contour line is a convex hull around the hand; the gridded
regions (A-H) are convexity defects in the hand contour relative to the convex hull

There are three important OpenCV methods that relate to complex hulls and convexity
defects. The first simply computes the hull of a contour that we have already identified,
and the second allows us to check whether an identified contour is already convex. The
third computes convexity defects in a contour for which the convex hull is known.

The cvConvexHull2() routine takes an array of points as its first argument. This
array is typically a matrix with two columns and n rows (i.e., n-by-2), or it can be a
contour. The points should be 32-bit integers (CV_325C1) or floating-point numbers
(CV_32FC1). The next argument is the now familiar pointer to a memory storage where
space for the result can be allocated. The next argument can be either CV_CLOCKWISE or
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CV_COUNTERCLOCKWISE, which will determine the orientation of the points when they are
returned by the routine. The final argument, returnPoints, can be either zero (0) or one
(1). If set to 1 then the points themselves will be stored in the return array. If it is set to 0,
then only indices* will be stored in the return array, indices that refer to the entries in
the original array passed to cvConvexHull2().

At this point the astute reader might ask: “If the hull storage argument is a memory
storage, then why is it prototyped as void*?” Good question. The reason is because, in
many cases, it is more useful to have the points of the hull returned in the form of an
array rather than a sequence. With this in mind, there is another possibility for the
hull storage argument, which is to pass in a CvMat* pointer to a matrix. In this case,
the matrix should be one-dimensional and have the same number of entries as there are
input points. When cvConvexHull2() is called, it will actually modify the header for the
matrix so that the correct number of columns are indicated.’

Sometimes we already have the contour but do not know if it is convex. In this case we
can call cvCheckContourConvexity(). This test is simple and fast,¥ but it will not work
correctly if the contour passed contains self-intersections.

The third routine, cvConvexityDefects(), actually computes the defects and returns a
sequence of the defects. In order to do this, cvConvexityDefects() requires the contour
itself, the convex hull, and a memory storage from which to get the memory needed to
allocate the result sequence. The first two arguments are CvArr* and are the same form
as the input argument to cvConvexHull2().
typedef struct CvConvexityDefect {
// point of the contour where the defect begins
CvPoint* start;
// point of the contour where the defect ends
CvPoint* end;
// point within the defect farthest from the convex hull
CvPoint* depth point;
// distance between the farthest point and the convex hull
float depth;
} CvConvexityDefect;

The cvConvexityDefects() routine returns a sequence of CvConvexityDefect structures
containing some simple parameters that can be used to characterize the defects. The start
and end members are points on the hull at which the defect begins and ends. The depth_
point indicates the point on the defect that is the farthest from the edge of the hull from
which the defect is a deflection. The final parameter, depth, is the distance between the
farthest point and the hull edge.

* If the input is CvSeq* or CvContour* then what will be stored are pointers to the points.

t You should know that the memory allocated for the data part of the matrix is not re-allocated in any way,
so don’t expect a rebate on your memory. In any case, since these are C-arrays, the correct memory will be
de-allocated when the matrix itself is released.

# Itactually runs in O(N) time, which is only marginally faster than the O(N log N) time required to con-
struct a convex hull.
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Pairwise Geometrical Histograms

Earlier we briefly visited the Freeman chain codes (FCCs). Recall that a Freeman chain
is a representation of a polygon in terms of a sequence of “moves”, where each move is
of a fixed length and in a particular direction. However, we did not linger on why one
might actually want to use such a representation.

There are many uses for Freeman chains, but the most popular one is worth a longer
look because the idea underlies the pairwise geometrical histogram (PGH).*

The PGH is actually a generalization or extension of what is known as a chain code his-
togram (CCH). The CCH is a histogram made by counting the number of each kind of
step in the Freeman chain code representation of a contour. This histogram has a num-
ber of nice properties. Most notably, rotations of the object by 45 degree increments be-
come cyclic transformations on the histogram (see Figure 8-13). This provides a method
of shape recognition that is not affected by such rotations.

0-1-1-2-2-4-3-2-3-5-6-6-6-6-7

6 6
5 5
4 4
3 3 M
2 2
1 1
0 0

1-2-2-3-3-5-4-3-4-6-7-7-7-7-7-8

01234567 01234567

(a) (b)

Figure 8-13. Freeman chain code representations of a contour (top) and their associated chain code
histograms (bottom); when the original contour (panel a) is rotated 45 degrees clockwise (panel b),
the resulting chain code histogram is the same as the original except shifted to the right by one unit

* OpenCV implements the method of Iivarinen, Peura, Sarel4, and Visa [livarinen97].
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The PGH is constructed as follows (see Figure 8-14). Each of the edges of the polygon is
successively chosen to be the “base edge”. Then each of the other edges is considered rela-
tive to that base edge and three values are computed: d,;,,, d,,.,,- and 6. The d,;, value is the
smallest distance between the two edges, d,,,, is the largest, and 0 is the angle between
them. The PGH is a two-dimensional histogram whose dimensions are the angle and the
distance.In particular: for every edge pair, thereisabin corresponding to (d,,,;,, 8) and abin
corresponding to (d,,,,, 6). For each such pair of edges, those two bins are incremented—
as are all bins for intermediate values of d (i.e., values between d ;, and d,_,).

min

dmax

A

(€]
(a) (b)

Figure 8-14. Pairwise geometric histogram: every two edge segments of the enclosing polygon have
an angle and a minimum and maximum distance (panel a); these numbers are encoded into a
two-dimensional histogram (panel b), which is rotation-invariant and can be matched against other
objects

The utility of the PGH is similar to that of the FCC. One important difference is that
the discriminating power of the PGH is higher, so it is more useful when attempting to
solve complex problems involving a greater number of shapes to be recognized and/or a
greater variability of background noise. The function used to compute the PGH is

void cvCalcPGH(
const CvSeg* contour,
CvHistogram* hist

);
Here contour can contain integer point coordinates; of course, hist must be two-
dimensional.

Exercises

1. Neglecting image noise, does the IPAN algorithm return the same “dominant
points” as we zoom in on an object? As we rotate the object?

a. Give the reasons for your answer.

b. Try it! Use PowerPoint or a similar program to draw an “interesting” white
shape on a black background. Turn it into an image and save. Resize the object
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several times, saving each time, and reposition it via several different rotations.
Read it in to OpenCV, turn it into grayscale, threshold, and find the contour.
Then use cvFindDominantPoints() to find the dominant points of the rotated
and scaled versions of the object. Are the same points found or not?

. Finding the extremal points (i.e., the two points that are farthest apart) in a closed
contour of N points can be accomplished by comparing the distance of each point
to every other point.

a. What is the complexity of such an algorithm?
b. Explain how you can do this faster.
. Create a circular image queue using CvSeq functions.

. What is the maximal closed contour length that could fit into a 4-by-4 image? What
is its contour area?

. Using PowerPoint or a similar program, draw a white circle of radius 20 on a black
background (the circle’s circumference will thus be 2 7 20 = 126.7. Save your draw-
ing as an image.

a. Read the image in, turn it into grayscale, threshold, and find the contour. What
is the contour length? Is it the same (within rounding) or different from the
calculated length?

b. Using 126.7 as a base length of the contour, run cvApproxPoly() using as param-
eters the following fractions of the base length: 90, 66, 33, 10. Find the contour
length and draw the results.

. Using the circle drawn in exercise 5, explore the results of cvFindDominantPoints()
as follows.

a. Varythed,, and d,,, distances and draw the results.

max

b. Then vary the neighborhood distance and describe the resulting changes.
c. Finally, vary the maximal angle threshold and describe the results.

. Subpixel corner finding. Create a white-on-black corner in PowerPoint (or similar
drawing program) such that the corner sits on exact integer coordinates. Save this
as an image and load into OpenCV.

a. Find and print out the exact coordinates of the corner.

b. Alter the original image: delete the actual corner by drawing a small black cir-
cle over its intersection. Save and load this image, and find the subpixel loca-
tion of this corner. Is it the same? Why or why not?

. Suppose we are building a bottle detector and wish to create a “bottle” feature. We
have many images of bottles that are easy to segment and find the contours of, but
the bottles are rotated and come in various sizes. We can draw the contours and
then find the Hu moments to yield an invariant bottle-feature vector. So far, so
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10.

11.

good—but should we draw filled-in contours or just line contours? Explain your
answer.

When using cvMoments() to extract bottle contour moments in exercise 8, how
should we set isBinary? Explain your answer.

Take the letter shapes used in the discussion of Hu moments. Produce variant im-
ages of the shapes by rotating to several different angles, scaling larger and smaller,
and combining these transformations. Describe which Hu features respond to rota-
tion, which to scale, and which to both.

Make a shape in PowerPoint (or another drawing program) and save it as an image.
Make a scaled, a rotated, and a rotated and scaled version of the object and then
store these as images. Compare them using cvMatchContourTrees() and cvConvexity
Defects(). Which is better for matching the shape? Why?
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CHAPTER9
Image Parts and Segmentation

Parts and Segments

This chapter focuses on how to isolate objects or parts of objects from the rest of the
image. The reasons for doing this should be obvious. In video security, for example, the
camera mostly looks out on the same boring background, which really isn’t of interest.
What is of interest is when people or vehicles enter the scene, or when something is left
in the scene that wasn’t there before. We want to isolate those events and to be able to
ignore the endless hours when nothing is changing.

Beyond separating foreground objects from the rest of the image, there are many situa-
tions where we want to separate out parts of objects, such as isolating just the face or the
hands of a person. We might also want to preprocess an image into meaningful super
pixels, which are segments of an image that contain things like limbs, hair, face, torso,
tree leaves, lake, path, lawn and so on. Using super pixels saves on computation; for
example, when running an object classifier over the image, we only need search a box
around each super pixel. We might only track the motion of these larger patches and not
every point inside.

We saw several image segmentation algorithms when we discussed image processing
in Chapter 5. The routines covered in that chapter included image morphology, flood
fill, threshold, and pyramid segmentation. This chapter examines other algorithms that
deal with finding, filling and isolating objects and object parts in an image. We start
with separating foreground objects from learned background scenes. These background
modeling functions are not built-in OpenCV functions; rather, they are examples of
how we can leverage OpenCV functions to implement more complex algorithms.

Background Subtraction

Because of its simplicity and because camera locations are fixed in many contexts, back-
ground subtraction (aka background differencing) is probably the most fundamental im-
age processing operation for video security applications. Toyama, Krumm, Brumitt, and
Meyers give a good overview and comparison of many techniques [Toyama99]. In order
to perform background subtraction, we first must “learn” a model of the background.
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Once learned, this background model is compared against the current image and then
the known background parts are subtracted away. The objects left after subtraction are
presumably new foreground objects.

Of course “background” is an ill-defined concept that varies by application. For ex-
ample, if you are watching a highway, perhaps average traffic flow should be consid-
ered background. Normally, background is considered to be any static or periodically
moving parts of a scene that remain static or periodic over the period of interest. The
whole ensemble may have time-varying components, such as trees waving in morning
and evening wind but standing still at noon. Two common but substantially distinct
environment categories that are likely to be encountered are indoor and outdoor scenes.
We are interested in tools that will help us in both of these environments. First we will
discuss the weaknesses of typical background models and then will move on to dis-
cuss higher-level scene models. Next we present a quick method that is mostly good for
indoor static background scenes whose lighting doesn’t change much. We will follow
this by a “codebook” method that is slightly slower but can work in both outdoor and
indoor scenes; it allows for periodic movements (such as trees waving in the wind) and
for lighting to change slowly or periodically. This method is also tolerant to learning
the background even when there are occasional foreground objects moving by. We’ll
top this off by another discussion of connected components (first seen in Chapter 5) in
the context of cleaning up foreground object detection. Finally, we’ll compare the quick
background method against the codebook background method.

Weaknesses of Background Subtraction

Although the background modeling methods mentioned here work fairly well for sim-
ple scenes, they suffer from an assumption that is often violated: that all the pixels are
independent. The methods we describe learn a model for the variations a pixel experi-
ences without considering neighboring pixels. In order to take surrounding pixels into
account, we could learn a multipart model, a simple example of which would be an
extension of our basic independent pixel model to include a rudimentary sense of the
brightness of neighboring pixels. In this case, we use the brightness of neighboring pix-
els to distinguish when neighboring pixel values are relatively bright or dim. We then
learn effectively two models for the individual pixel: one for when the surrounding pix-
els are bright and one for when the surrounding pixels are dim. In this way, we have a
model that takes into account the surrounding context. But this comes at the cost of
twice as much memory use and more computation, since we now need different values
for when the surrounding pixels are bright or dim. We also need twice as much data to
fill out this two-state model. We can generalize the idea of “high” and “low” contexts
to a multidimensional histogram of single and surrounding pixel intensities as well as
make it even more complex by doing all this over a few time steps. Of course, this richer
model over space and time would require still more memory, more collected data sam-
ples, and more computational resources.

Because of these extra costs, the more complex models are usually avoided. We can
often more efficiently invest our resources in cleaning up the false positive pixels that
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result when the independent pixel assumption is violated. The cleanup takes the form
of image processing operations (cvErode(), cvDilate(), and cvFloodFill(), mostly) that
eliminate stray patches of pixels. We’ve discussed these routines previously (Chapter 5)
in the context of finding large and compact* connected components within noisy data.
We will employ connected components again in this chapter and so, for now, will re-
strict our discussion to approaches that assume pixels vary independently.

Scene Modeling

How do we define background and foreground? If we’re watching a parking lot and a
car comes in to park, then this car is a new foreground object. But should it stay fore-
ground forever? How about a trash can that was moved? It will show up as foreground
in two places: the place it was moved to and the “hole” it was moved from. How do we
tell the difference? And again, how long should the trash can (and its hole) remain fore-
ground? If we are modeling a dark room and suddenly someone turns on a light, should
the whole room become foreground? To answer these questions, we need a higher-level
“scene” model, in which we define multiple levels between foreground and background
states, and a timing-based method of slowly relegating unmoving foreground patches to
background patches. We will also have to detect and create a new model when there is a
global change in a scene.

In general, a scene model might contain multiple layers, from “new foreground” to older
foreground on down to background. There might also be some motion detection so that,
when an object is moved, we can identify both its “positive” aspect (its new location)
and its “negative” aspect (its old location, the “hole”).

In this way, a new foreground object would be put in the “new foreground” object level
and marked as a positive object or a hole. In areas where there was no foreground ob-
ject, we could continue updating our background model. If a foreground object does not
move for a given time, it is demoted to “older foreground,” where its pixel statistics are
provisionally learned until its learned model joins the learned background model.

For global change detection such as turning on a light in a room, we might use global
frame differencing. For example, if many pixels change at once then we could classify it as
a global rather than local change and then switch to using a model for the new situation.

A Slice of Pixels

Before we go on to modeling pixel changes, let’s get an idea of what pixels in an image
can look like over time. Consider a camera looking out a window to a scene of a tree
blowing in the wind. Figure 9-1 shows what the pixels in a given line segment of the
image look like over 60 frames. We wish to model these kinds of fluctuations. Before do-
ing so, however, we make a small digression to discuss how we sampled this line because
it’s a generally useful trick for creating features and for debugging.

* Here we are using mathematician’s definition of “compact,” which has nothing to do with size.
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Figure 9-1. Fluctuations of a line of pixels in a scene of a tree moving in the wind over 60 frames:
some dark areas (upper left) are quite stable, whereas moving branches (upper center) can vary
widely

OpenCV has functions that make it easy to sample an arbitrary line of pixels. The line
sampling functions are cvInitLineIterator() and CV_NEXT_LINE POINT(). The function
prototype for cvInitLineIterator() is:

int cvInitlineIterator(
const CvArT* image,

CvPoint pti,

CvPoint pt2,
CvLineIterator* line iterator,

int connectivity = 8,
int left to right = 0

);
The input image may be of any type or number of channels. Points pt1 and pt2 are the
ends of the line segment. The iterator 1ine iterator just steps through, pointing to the
pixels along the line between the points. In the case of multichannel images, each call
to CV_NEXT LINE POINT() moves the line iterator to the next pixel. All the channels
are available at once as line iterator.ptr[0], line iterator.ptr[1], and so forth. The
connectivity can be 4 (the line can step right, left, up, or down) or 8 (the line can ad-
ditionally step along the diagonals). Finally if left to right is set to 0 (false), then line_
iterator scans from pt1 to pt2; otherwise, it will go from the leftmost to the rightmost
point.* The cvInitLineIterator() function returns the number of points that will be

* The left_to_right flag was introduced because a discrete line drawn from pt1 to pt2 does not always
match the line from pt2 to pt1. Therefore, setting this flag gives the user a consistent rasterization regard-
less of the pt1, pt2 order.
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iterated over for that line. A companion macro, CV_NEXT LINE POINT(line iterator), steps

the iterator from one pixel to another.

Let’s take a second to look at how this method can be used to extract some data from
a file (Example 9-1). Then we can re-examine Figure 9-1 in terms of the resulting data

from that movie file.

Example 9-1. Reading out the RGB values of all pixels in one row of a video and accumulating those

values into three separate files
// STORE TO DISK A LINE SECMENT OF BGR PIXELS FROM pti1 to pt2.

/

CvCapture* capture = cvCreateFileCapture( argv[1] );
int max_buffer;

IplImage* rawImage;

int r[10000],g[10000],b[10000];

CvLineIterator iterator;

FILE *fptrb = fopen(“blines.csv”,“w”); // Store the data here
FILE *fptrg = fopen(“glines.csv”,“w”); // for each color channel
FILE *fptrr = fopen(“rlines.csv”,“w”);

// MAIN PROCESSING LOOP:
/
for(;;){
if( lcvGrabFrame( capture ))
break;
rawImage = cvRetrieveFrame( capture );
max_buffer = cvInitLineIterator(rawImage,pt1,pt2,8iterator,8,0);
for(int j=0; j<max_buffer; j++){

fprintf(fptrb,“%d,”, iterator.ptr[o]); //Write blue value
fprintf(fptrg,“%d,”, iterator.ptr[1]); //green
fprintf(fptrr,“%d,”, iterator.ptr[2]); //red

iterator.ptr[2] = 255; //Mark this sample in red

CV_NEXT_LINE_POINT(iterator); //Step to the next pixel
}
// OUTPUT THE DATA IN ROWS:
/
fprintf(fptrb,“/n”); fprintf(fptrg,/n”);fprintf(fptrr,“/n”);
}
// CLEAN UP:
/
fclose(fptrb); fclose(fptrg); fclose(fptrr);
cvReleaseCapture( &capture );

We could have made the line sampling even easier, as follows:

int cvSampleLine(
const CvArr* image,
CvPoint pt1,
CvPoint pt2,
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void* buffer,
int connectivity = 8
);

This function simply wraps the function cvInitLineIterator() together with the macro
CV_NEXT_LINE_POINT(line iterator) from before. It samples from pt1 to pt2; then you pass
it a pointer to a buffer of the right type and of length Ny, X max(|pt2, - pt2,| + 1,
[pt2, - pt2,| + 1). Just like the line iterator, cvSampleLine() steps through each channel
of each pixel in a multichannel image before moving to the next pixel. The function re-

turns the number of actual elements it filled in the buffer.

We are now ready to move on to some methods for modeling the kinds of pixel fluctua-
tions seen in Figure 9-1. As we move from simple to increasingly complex models, we
shall restrict our attention to those models that will run in real time and within reason-
able memory constraints.

Frame Differencing

The very simplest background subtraction method is to subtract one frame from another
(possibly several frames later) and then label any difference that is “big enough” the
foreground. This process tends to catch the edges of moving objects. For simplicity, let’s
say we have three single-channel images: frameTime1, frameTime2, and frameForeground.
The image frameTime1 is filled with an older grayscale image, and frameTime2 is filled
with the current grayscale image. We could then use the following code to detect the
magnitude (absolute value) of foreground differences in frameForeground:
cVvAbsDiff(
frameTimel,

frameTime2,
frameForeground

);
Because pixel values always exhibit noise and fluctuations, we should ignore (set to 0)
small differences (say, less than 15), and mark the rest as big differences (set to 255):
cvThreshold(
frameForeground,
frameForeground,
15,

255,
CV_THRESH_BINARY

);

The image frameForeground then marks candidate foreground objects as 255 and back-
ground pixels as 0. We need to clean up small noise areas as discussed earlier; we might
do this with cvErode() or by using connected components. For color images, we could use
the same code for each color channel and then combine the channels with cvOr(). This
method is much too simple for most applications other than merely indicating regions of
motion. For a more effective background model we need to keep some statistics about the
means and average differences of pixels in the scene. You can look ahead to the section
entitled “A quick test” to see examples of frame differencing in Figures 9-5 and 9-6.
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Averaging Background Method

The averaging method basically learns the average and standard deviation (or simi-
larly, but computationally faster, the average difference) of each pixel as its model of the
background.

Consider the pixel line from Figure 9-1. Instead of plotting one sequence of values
for each frame (as we did in that figure), we can represent the variations of each pixel
throughout the video in terms of an average and average differences (Figure 9-2). In the
same video, a foreground object (which is, in fact, a hand) passes in front of the camera.
That foreground object is not nearly as bright as the sky and tree in the background. The
brightness of the hand is also shown in the figure.

Averaging Method with High/Low Thresholds:

/\ Mean+2*Avg lef
A T ‘\,J A

= <= Hand Brightness =>

Mean - 2*Avg_Diff

]

Figure 9-2. Data from Figure 9-1 presented in terms of average differences: an object (a hand) that
passes in front of the camera is somewhat darker, and the brightness of that object is reflected in the

graph

The averaging method makes use of four OpenCV routines: cvAcc(), to accumulate im-
ages over time; cvAbsDiff(), to accumulate frame-to-frame image differences over time;
cvInRange(), to segment the image (once a background model has been learned) into
foreground and background regions; and cv0r(), to compile segmentations from differ-
ent color channels into a single mask image. Because this is a rather long code example,
we will break it into pieces and discuss each piece in turn.

First, we create pointers for the various scratch and statistics-keeping images we will
need along the way. It will prove helpful to sort these pointers according to the type of
images they will later hold.

//Global storage

I
//Float, 3-channel images

//
Iplimage *IavgF,*IdiffF, *IprevF, *IhiF, *IlowF;
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IplImage *Iscratch,*Iscratch2;

//Float, 1-channel images

//

IplImage *Igrayi,*Igray2, *Igray3;
IplImage *Ilowi1, *Ilow2, *Ilow3;
IplImage *Ihi1,  *Ihi2, *Ihi3;

// Byte, 1-channel image
//
IplImage *Imaskt;

//Counts number of images learned for averaging later.

4

float Icount;
Next we create a single call to allocate all the necessary intermediate images. For con-
venience we pass in a single image (from our video) that can be used as a reference for
sizing the intermediate images.

// T is just a sample image for allocation purposes

// (passed in for sizing)

/
void AllocateImages( IplImage* I ){

CvSize sz = cvGetSize( I );

TavgF = cvCreateImage( sz, IPL _DEPTH 32F, 3 );
IdiffF = cvCreateImage( sz, IPL DEPTH 32F, 3 );
IprevF = cvCreateImage( sz, IPL_DEPTH_32F, 3 );
ThiF = cvCreateImage( sz, IPL DEPTH 32F, 3 );
IlowF = cvCreateImage( sz, IPL DEPTH 32F, 3 );
Ilowl = cvCreateImage( sz, IPL_DEPTH 32F, 1 );
Tlow2 = cvCreateImage( sz, IPL DEPTH 32F, 1 );
Ilow3 = cvCreateImage( sz, IPL DEPTH 32F, 1 );
Thi1 = cvCreateImage( sz, IPL_DEPTH 32F, 1 );
Thi2 = cvCreateImage( sz, IPL _DEPTH 32F, 1 );
Ihi3 = cvCreateImage( sz, IPL DEPTH 32F, 1 );
cvZero( TavgF );

cvZero( IdiffF );

cvZero( IprevF );

cvZero( IhiF );

cvZero( IlowF );

Icount = 0.00001; //Protect against divide by zero
Iscratch = cvCreateImage( sz, IPL_DEPTH 32F, 3 );
Iscratch2 = cvCreateImage( sz, IPL DEPTH 32F, 3 );
Igrayl = cvCreateImage( sz, IPL DEPTH 32F, 1 );
Igray2 = cvCreateImage( sz, IPL DEPTH 32F, 1 );
Igray3 = cvCreateImage( sz, IPL DEPTH 32F, 1 );
Imaskt = cvCreateImage( sz, IPL DEPTH 8U, 1 );

cvZero( Iscratch );
cvZero( Iscratch2 );
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In the next piece of code, we learn the accumulated background image and the accu-
mulated absolute value of frame-to-frame image differences (a computationally quicker
proxy* for learning the standard deviation of the image pixels). This is typically called
for 30 to 1,000 frames, sometimes taking just a few frames from each second or some-
times taking all available frames. The routine will be called with a three-color channel
image of depth 8 bits.

// Learn the background statistics for one more frame

// 1 is a color sample of the background, 3-channel, 8u

I
void accumulateBackground( IplImage *I ){

static int first = 1; // nb. Not thread safe
cvCvtScale( I, Iscratch, 1, 0 ); // convert to float
if( Mirst ){

cvAcc( Iscratch, IavgF );

cvAbsDiff( Iscratch, IprevF, Iscratch2 );

cvAcc( Iscratch2, IdiffF );

Icount += 1.0;

}
first = 0;
cvCopy( Iscratch, IprevF );

}

We first use cvCvtScale() to turn the raw background 8-bit-per-channel, three-color-
channel image into a floating-point three-channel image. We then accumulate the raw
floating-point images into IavgF. Next, we calculate the frame-to-frame absolute dif-
ference image using cvAbsDiff() and accumulate that into image IdiffF. Each time we
accumulate these images, we increment the image count Icount, a global, to use for av-
eraging later.

Once we have accumulated enough frames, we convert them into a statistical model of
the background. That is, we compute the means and deviation measures (the average
absolute differences) of each pixel:

void createModelsfromStats() {

cvConvertScale( IavgF, IavgF,( double)(1.0/Icount) );
cvConvertScale( IdiffF, IdiffF,(double)(1.0/Icount) );

//Make sure diff is always something

/

cvAddS( IdiffF, cvScalar( 1.0, 1.0, 1.0), IdiffF );
setHighThreshold( 7.0 );

setlLowThreshold( 6.0 );

* Notice our use of the word “proxy.” Average difference is not mathematically equivalent to standard
deviation, but in this context it is close enough to yield results of similar quality. The advantage of average
difference is that it is slightly faster to compute than standard deviation. With only a tiny modification of
the code example you can use standard deviations instead and compare the quality of the final results for
yourself; we’ll discuss this more explicitly later in this section.

Background Subtraction | 273



In this code, cvConvertScale() calculates the average raw and absolute difference images
by dividing by the number of input images accumulated. As a precaution, we ensure
that the average difference image is at least 1; we’ll need to scale this factor when calcu-
lating a foreground-background threshold and would like to avoid the degenerate case
in which these two thresholds could become equal.

Both setHighThreshold() and setLowThreshold() are utility functions that set a threshold
based on the frame-to-frame average absolute differences. The call setHighThreshold(7.0)
fixes a threshold such that any value that is 7 times the average frame-to-frame abso-
lute difference above the average value for that pixel is considered foreground; likewise,
setLowThreshold(6.0) sets a threshold bound that is 6 times the average frame-to-frame
absolute difference below the average value for that pixel. Within this range around the
pixel’s average value, objects are considered to be background. These threshold func-
tions are:

void setHighThreshold( float scale )
{

cvConvertScale( IdiffF, Iscratch, scale );
cvAdd( Iscratch, IavgF, IhiF );
cvSplit( IhiF, Ihii, Ihi2, Ihi3, 0 );

}

void setlLowThreshold( float scale )
{

cvConvertScale( IdiffF, Iscratch, scale );
cvSub( TavgF, Iscratch, IlowF );
cvSplit( IlowF, Ilowi, Ilow2, Ilow3, O );
}
Again, in setlowThreshold() and setHighThreshold() we use cvConvertScale() to multi-
ply the values prior to adding or subtracting these ranges relative to IavgF. This action
sets the ThiF and IlowF range for each channel in the image via cvSplit().

Once we have our background model, complete with high and low thresholds, we use
it to segment the image into foreground (things not “explained” by the background im-
age) and the background (anything that fits within the high and low thresholds of our
background model). Segmentation is done by calling:

// Create a binary: 0,255 mask where 255 means foreground pixel

/1 Input image, 3-channel, 8u
// Imask Mask image to be created, 1-channel 8u
/!

void backgroundDiff(
Iplimage *I,
IplImage *Imask
) 1
cvCvtScale(I,Iscratch,1,0); // To float;
cvSplit( Iscratch, Igrayi,Igray2,Igray3, 0 );

//Channel 1
//
cvInRange(Igray1,Ilowi,Ihi1,Imask);
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//Channel 2
//
cvInRange(Igray2,Ilow2,Ihi2,Imaskt);

cvOr(Imask,Imaskt,Imask);

//Channel 3

I
cvInRange(Igray3,Ilow3,Ihi3,Imaskt);

cvOr (Imask,Imaskt,Imask)

//Finally, invert the results

/
cvSubRS( Imask, 255, Imask);

}

This function first converts the input image I (the image to be segmented) into a float-
ing-point image by calling cvCvtScale(). We then convert the three-channel image into
separate one-channel image planes using cvSplit(). These color channel planes are then
checked to see if they are within the high and low range of the average background
pixel via the cvInRange() function, which sets the grayscale 8-bit depth image Imaskt to
max (255) when it’s in range and to 0 otherwise. For each color channel we logically OR
the segmentation results into a mask image Imask, since strong differences in any color
channel are considered evidence of a foreground pixel here. Finally, we invert Imask us-
ing cvSubRS(), because foreground should be the values out of range, not in range. The
mask image is the output result.

For completeness, we need to release the image memory once we're finished using the
background model:

void DeallocateImages()

{
cvReleaseImage( &IavgF);
cvReleaseImage( &IdiffF );
cvReleaseImage( &IprevF );
cvReleaseImage( &IhiF );
cvReleaseImage( &IlowF );
cvReleaseImage( &Ilowl );
cvReleaseImage( &Ilow2 );
cvReleaseImage( &Ilow3 );
cvReleaseImage( &Ihi1 );
cvReleaseImage( &Ihi2 );
cvReleaseImage( &Ihi3 );
cvReleaseImage( &Iscratch );
cvReleaseImage( &Iscratch2 );
cvReleaseImage( &Igrayl );
cvReleaseImage( &Igray2 );
cvReleaseImage( &Igray3 );
cvReleaseImage( &Imaskt);

}

We've just seen a simple method of learning background scenes and segmenting fore-
ground objects. It will work well only with scenes that do not contain moving background
components (like a waving curtain or waving trees). It also assumes that the lighting
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remains fairly constant (as in indoor static scenes). You can look ahead to Figure 9-5
to check the performance of this averaging method.

Accumulating means, variances, and covariances

The averaging background method just described made use of one accumulation func-
tion, cvAcc(). It is one of a group of helper functions for accumulating sums of images,
squared images, multiplied images, or average images from which we can compute basic
statistics (means, variances, covariances) for all or part of a scene. In this section, we’ll
look at the other functions in this group.

The images in any given function must all have the same width and height. In each
function, the input images named image, imagel, or image2 can be one- or three-
channel byte (8-bit) or floating-point (32F) image arrays. The output accumulation im-
ages named sum, sqsum, or acc can be either single-precision (32F) or double-precision
(64F) arrays. In the accumulation functions, the mask image (if present) restricts pro-
cessing to only those locations where the mask pixels are nonzero.

Finding the mean. To compute a mean value for each pixel across a large set of images, the
easiest method is to add them all up using cvAcc() and then divide by the total number
of images to obtain the mean.
void cvAcc(
const Cvrr* image,

CvATrT* sum,
const CvArr* mask = NULL

);
An alternative that is often useful is to use a running average.

void cvRunningAvg(
const CvArr* image,
CvArr* acc,
double alpha,
const CvArr* mask = NULL

)

The running average is given by the following formula:

acc(x,y)=(1-a)-acc(x, y) +a -image(x, y) if mask(x,y)#0

For a constant value of &, running averages are not equivalent to the result of summing
with cvAcc(). To see this, simply consider adding three numbers (2, 3, and 4) with « set
to 0.5. If we were to accumulate them with cvAcc(), then the sum would be 9 and the
average 3. If we were to accumulate them with cvRunningAverage(), the first sum would
give 0.5 X 2 + 0.5 X 3 = 2.5 and then adding the third term would give 0.5 X 2.5 + 0.5 X
4 = 3.25. The reason the second number is larger is that the most recent contributions
are given more weight than those from farther in the past. Such a running average is
thus also called a tracker. The parameter « essentially sets the amount of time necessary
for the influence of a previous frame to fade.
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Finding the variance. We can also accumulate squared images, which will allow us to com-
pute quickly the variance of individual pixels.
void cvSquareAcc(
const CvArr* image,

CvATT* sqsum,
const CvArr* mask = NULL

);
You may recall from your last class in statistics that the variance of a finite population is
defined by the formula:

o’ —Lf(x x)
N&

where X is the mean of x for all N samples. The problem with this formula is that it
entails making one pass through the images to compute X and then a second pass to
compute o?. A little algebra should allow you to convince yourself that the following
formula will work just as well:

g8
DJi:O ' DJi:o '

Using this form, we can accumulate both the pixel values and their squares in a single
pass. Then, the variance of a single pixel is just the average of the square minus the
square of the average.

Finding the covariance. We can also see how images vary over time by selecting a specific lag
and then multiplying the current image by the image from the past that corresponds to
the given lag. The function cvMultiplyAcc() will perform a pixelwise multiplication of
the two images and then add the result to the “running total” in acc:

void cvMultiplyAcc(
const CvArr* imagei,
const CvArr* image2,
CvArr* acc,
const CvArr* mask = NULL

);
For covariance, there is a formula analogous to the one we just gave for variance. This
formula is also a single-pass formula in that it has been manipulated algebraically from
the standard form so as not to require two trips through the list of images:

Cov(x,y)= (%Z(xiyi )J—(%in J(%Zy} ]

In our context, x is the image at time ¢ and y is the image at time ¢t — d, where d is
the lag.
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We can use the accumulation functions described here to create a variety of statistics-
based background models. The literature is full of variations on the basic model used as
our example. You will probably find that, in your own applications, you will tend to extend
this simplest model into slightly more specialized versions. A common enhancement, for
example, is for the thresholds to be adaptive to some observed global state changes.

Advanced Background Method

Many background scenes contain complicated moving objects such as trees waving in the
wind, fans turning, curtains fluttering, et cetera. Often such scenes also contain varying
lighting, such as clouds passing by or doors and windows letting in different light.

A nice method to deal with this would be to fit a time-series model to each pixel or
group of pixels. This kind of model deals with the temporal fluctuations well, but its
disadvantage is the need for a great deal of memory [Toyama99]. If we use 2 seconds
of previous input at 30 Hz, this means we need 60 samples for each pixel. The resulting
model for each pixel would then encode what it had learned in the form of 60 differ-
ent adapted weights. Often we’d need to gather background statistics for much longer
than 2 seconds, which means that such methods are typically impractical on present-
day hardware.

To get fairly close to the performance of adaptive filtering, we take inspiration from
the techniques of video compression and attempt to form a codebook* to represent sig-
nificant states in the background.” The simplest way to do this would be to compare a
new value observed for a pixel with prior observed values. If the value is close to a prior
value, then it is modeled as a perturbation on that color. If it is not close, then it can seed
a new group of colors to be associated with that pixel. The result could be envisioned as
a bunch of blobs floating in RGB space, each blob representing a separate volume con-
sidered likely to be background.

In practice, the choice of RGB is not particularly optimal. It is almost always better to
use a color space whose axis is aligned with brightness, such as the YUV color space.
(YUV is the most common choice, but spaces such as HSV, where V is essentially bright-
ness, would work as well.) The reason for this is that, empirically, most of the variation
in background tends to be along the brightness axis, not the color axis.

The next detail is how to model the “blobs.” We have essentially the same choices as
before with our simpler model. We could, for example, choose to model the blobs as
Gaussian clusters with a mean and a covariance. It turns out that the simplest case, in

* The method OpenCV implements is derived from Kim, Chalidabhongse, Harwood, and Davis [Kim05], but
rather than learning-oriented tubes in RGB space, for speed, the authors use axis-aligned boxes in YUV
space. Fast methods for cleaning up the resulting background image can be found in Martins [Martins99].

t There is a large literature for background modeling and segmentation. OpenCV’s implementation is
intended to be fast and robust enough that you can use it to collect foreground objects mainly for the pur-
poses of collecting data sets to train classifiers on. Recent work in background subtraction allows arbitrary
camera motion [Farin04; Colombari07] and dynamic background models using the mean-shift algorithm
[Liu07].
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which the “blobs” are simply boxes with a learned extent in each of the three axes of our
color space, works out quite well. It is the simplest in terms of memory required and in
terms of the computational cost of determining whether a newly observed pixel is inside
any of the learned boxes.

Let’s explain what a codebook is by using a simple example (Figure 9-3). A codebook
is made up of boxes that grow to cover the common values seen over time. The upper
panel of Figure 9-3 shows a waveform over time. In the lower panel, boxes form to cover
a new value and then slowly grow to cover nearby values. If a value is too far away, then
a new box forms to cover it and likewise grows slowly toward new values.

*Waveform:
g,
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*Codebookformation:
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Figure 9-3. Codebooks are just “boxes” delimiting intensity values: a box is formed to cover a new
value and slowly grows to cover nearby values; if values are too far away then a new box is formed
(see text)

In the case of our background model, we will learn a codebook of boxes that cover three
dimensions: the three channels that make up our image at each pixel. Figure 9-4 visu-
alizes the (intensity dimension of the) codebooks for six different pixels learned from
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the data in Figure 9-1.* This codebook method can deal with pixels that change levels
dramatically (e.g., pixels in a windblown tree, which might alternately be one of many
colors of leaves, or the blue sky beyond that tree). With this more precise method of
modeling, we can detect a foreground object that has values between the pixel values.
Compare this with Figure 9-2, where the averaging method cannot distinguish the hand
value (shown as a dotted line) from the pixel fluctuations. Peeking ahead to the next
section, we see the better performance of the codebook method versus the averaging
method shown later in Figure 9-7.

Example Codebooks:

Learn codebooks: |

=+ <= Hand Brightness =>

Figure 9-4. Intensity portion of learned codebook entries for fluctuations of six chosen pixels (shown
as vertical boxes): codebook boxes accommodate pixels that take on multiple discrete values and so
can better model discontinuous distributions; thus they can detect a foreground hand (value at dot-
ted line) whose average value is between the values that background pixels can assume. In this case
the codebooks are one dimensional and only represent variations in intensity

In the codebook method of learning a background model, each box is defined by two
thresholds (max and min) over each of the three color axes. These box boundary thresh-
olds will expand (max getting larger, min getting smaller) if new background samples fall
within a learning threshold (learnHigh and learnLow) above max or below min, respec-
tively. If new background samples fall outside of the box and its learning thresholds,
then a new box will be started. In the background difference mode there are acceptance
thresholds maxMod and minMod; using these threshold values, we say that if a pixel is “close
enough” to a max or a min box boundary then we count it as if it were inside the box. A
second runtime threshold allows for adjusting the model to specific conditions.

A
®5 A situation we will not cover is a pan-tilt camera surveying a large
.ﬁ: scene. When working with a large scene, it is necessary to stitch
o VLo together learned models indexed by the pan and tilt angles.

* In this case we have chosen several pixels at random from the scan line to avoid excessive clutter. Of course,
there is actually a codebook for every pixel.
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Structures

It’s time to look at all of this in more detail, so let’s create an implementation of the
codebook algorithm. First, we need our codebook structure, which will simply point to
a bunch of boxes in YUV space:
typedef struct code book {
code_element **cb;
int numEntries;

int t; //count every access
} codeBook;

We track how many codebook entries we have in numentries. The variable t counts the
number of points we’ve accumulated since the start or the last clear operation. Here’s
how the actual codebook elements are described:

#define CHANNELS 3

typedef struct ce {

uchar learnHigh[CHANNELS]; //High side threshold for learning
uchar learnLow[CHANNELS]; //Low side threshold for learning

uchar max[CHANNELS]; //High side of box boundary

uchar min[CHANNELS]; //Low side of box boundary

int t_last_update; //Allow us to kill stale entries

int stale; //max negative run (longest period of inactivity)

} code_element;

Each codebook entry consumes four bytes per channel plus two integers, or CHANNELS X
4 + 4 + 4 bytes (20 bytes when we use three channels). We may set CHANNELS to any
positive number equal to or less than the number of color channels in an image, but it
is usually set to either 1 (“Y”, or brightness only) or 3 (YUV, HSV). In this structure,
for each channel, max and min are the boundaries of the codebook box. The parameters
learnHigh[] and learnLow[] are the thresholds that trigger generation of a new code ele-
ment. Specifically, a new code element will be generated if a new pixel is encountered
whose values do not lie between min - learnLow and max + learnHigh in each of the
channels. The time to last update (t_last update) and stale are used to enable the dele-
tion of seldom-used codebook entries created during learning. Now we can proceed to
investigate the functions that use this structure to learn dynamic backgrounds.

Learning the background

We will have one codeBook of code_elements for each pixel. We will need an array of
such codebooks that is equal in length to the number of pixels in the images we’ll be
learning. For each pixel, update_codebook() is called for as many images as are sufficient
to capture the relevant changes in the background. Learning may be updated periodi-
cally throughout, and clear stale_entries() can be used to learn the background in the
presence of (small numbers of) moving foreground objects. This is possible because the
seldom-used “stale” entries induced by a moving foreground will be deleted. The inter-
face to update_codebook() is as follows.
W

// int update codebook(uchar *p, codeBook 8c, unsigned cbBounds)
// Updates the codebook entry with a new data point
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//

/] p Pointer to a YUV pixel

/] ¢ Codebook for this pixel

// cbBounds Learning bounds for codebook (Rule of thumb: 10)
// numChannels Number of color channels we’re learning

//

// NOTES:

// cvBounds must be of length equal to numChannels
I

// RETURN

// codebook index

I

int update_codebook(
uchar* P,
codeBook8 c,
unsigned* cbBounds,
int numChannels
N
unsigned int high[3],1low([3];
for(n=0; n<numChannels; n++)

{
high[n] = *(p+n)+*(cbBounds+n);
if(high[n] > 255) high[n] = 255;
low[n] = *(p+n)-*(cbBounds+n);
if(low[n] < 0) low[n] = 0;

}

int matchChannel,

// SEE IF THIS FITS AN EXISTING CODEWORD
//
for(int i=0; i<c.numkntries; i++){
matchChannel = o;
for(n=0; n<numChannels; n++){
if((c.cb[i]->learnLow[n] <= *(p+n)) 8&
//Found an entry for this channel
(*(p+n) <= c.cb[i]->learnHigh[n]))

matchChannel++;

}

if(matchChannel == numChannels) //If an entry was found

c.cb[i]->t last update = c.t;
//adjust this codeword for the first channel
for(n=0; n<numChannels; n++){
if(c.cb[i]->max[n] < *(p+n))
{

c.cb[i]->max[n] = *(p+n);

else if(c.cb[i]->min[n] > *(p+n))

{

}
}

break;

c.cb[i]->min[n] = *(p+n);
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}
}

. continued below

This function grows or adds a codebook entry when the pixel p falls outside the existing
codebook boxes. Boxes grow when the pixel is within cbBounds of an existing box. If a
pixel is outside the cbBounds distance from a box, a new codebook box is created. The
routine first sets high and low levels to be used later. It then goes through each codebook
entry to check whether the pixel value *p is inside the learning bounds of the codebook
“box”. If the pixel is within the learning bounds for all channels, then the appropriate
max or min level is adjusted to include this pixel and the time of last update is set to the
current timed count c.t. Next, the update codebook() routine keeps statistics on how
often each codebook entry is hit:

. continued from above

// OVERHEAD TO TRACK POTENTIAL STALE ENTRIES
/!

for(int s=0; s<c.numEntries; s++){

// Track which codebook entries are going stale:
I

int negRun = c.t - c.cb[s]->t_last update;
if(c.cb[s]->stale < negRun) c.cb[s]->stale = negRun;

. continued below

Here, the variable stale contains the largest negative runtime (i.e., the longest span of
time during which that code was not accessed by the data). Tracking stale entries al-
lows us to delete codebooks that were formed from noise or moving foreground objects
and hence tend to become stale over time. In the next stage of learning the background,
update_codebook() adds a new codebook if needed:

. continued from above

// ENTER A NEW CODEWORD IF NEEDED
//
if(i == c.numEntries) //if no existing codeword found, make one
{
code_element **foo = new code element* [c.numEntries+1];
for(int ii=0; ii<c.numEntries; ii++) {
foo[ii] = c.cb[ii];
}
foo[c.numEntries] = new code element;
if(c.numEntries) delete [] c.cb;
c.cb = foo;
for(n=0; n<numChannels; n++) {
c.cb[c.numEntries]->learnHigh[n] = high[n];
c.cb[c.numEntries]->learnLow[n] = low[n];
c.cb[c.numEntries]->max[n] = *(p+n);
c.cb[c.numEntries]->min[n] = *(p+n);
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c.cb[c.numEntries]->t last update = c.t;
c.cb[c.numEntries]->stale = 0;
c.numkEntries += 1;

}

. continued below
Finally, update codebook() slowly adjusts (by adding 1) the learnHigh and learnlLow
learning boundaries if pixels were found outside of the box thresholds but still within
the high and low bounds:

. continued from above

// SLOWLY ADJUST LEARNING BOUNDS
//
for(n=0; n<numChannels; n++)
{
if(c.cb[i]->learnHigh[n] < high[n]) c.cb[i]->learnHigh[n] +=
if(c.cb[i]->learnLow[n] > low[n]) c.cb[i]->learnLow[n